A novel statistical method for rare-variant association studies in general pedigrees

被引:0
|
作者
Huanhuan Zhu
Zhenchuan Wang
Xuexia Wang
Qiuying Sha
机构
[1] Michigan Technological University,Department of Mathematical Sciences
[2] University of North Texas,Department of Mathematics
关键词
Rare Variant; Genetic Analysis Workshop; General Pedigree; Sequence Kernel Association Test; GAW19 Data;
D O I
10.1186/s12919-016-0029-6
中图分类号
学科分类号
摘要
Both population-based and family-based designs are commonly used in genetic association studies to identify rare variants that underlie complex diseases. For any type of study design, the statistical power will be improved if rare variants can be enriched in the samples. Family-based designs, with ascertainment based on phenotype, may enrich the sample for causal rare variants and thus can be more powerful than population-based designs. Therefore, it is important to develop family-based statistical methods that can account for ascertainment. In this paper, we develop a novel statistical method for rare-variant association studies in general pedigrees for quantitative traits. This method uses a retrospective view that treats the traits as fixed and the genotypes as random, which allows us to account for complex and undefined ascertainment of families. We then apply the newly developed method to the Genetic Analysis Workshop 19 data set and compare the power of the new method with two other methods for general pedigrees. The results show that the newly proposed method increases power in most of the cases we consider, more than the other two methods.
引用
收藏
相关论文
共 50 条
  • [41] The effect of phenotypic outliers and non-normality on rare-variant association testing
    Auer, Paul L.
    Reiner, Alex P.
    Leal, Suzanne M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 (08) : 1188 - 1194
  • [42] Author Correction: Exome sequencing of Finnish isolates enhances rare-variant association power
    Adam E. Locke
    Karyn Meltz Steinberg
    Charleston W. K. Chiang
    Susan K. Service
    Aki S. Havulinna
    Laurel Stell
    Matti Pirinen
    Haley J. Abel
    Colby C. Chiang
    Robert S. Fulton
    Anne U. Jackson
    Chul Joo Kang
    Krishna L. Kanchi
    Daniel C. Koboldt
    David E. Larson
    Joanne Nelson
    Thomas J. Nicholas
    Arto Pietilä
    Vasily Ramensky
    Debashree Ray
    Laura J. Scott
    Heather M. Stringham
    Jagadish Vangipurapu
    Ryan Welch
    Pranav Yajnik
    Xianyong Yin
    Johan G. Eriksson
    Mika Ala-Korpela
    Marjo-Riitta Järvelin
    Minna Männikkö
    Hannele Laivuori
    Susan K. Dutcher
    Nathan O. Stitziel
    Richard K. Wilson
    Ira M. Hall
    Chiara Sabatti
    Aarno Palotie
    Veikko Salomaa
    Markku Laakso
    Samuli Ripatti
    Michael Boehnke
    Nelson B. Freimer
    Nature, 2019, 575 : E4 - E4
  • [43] A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data
    Hu, Hao
    Roach, Jared C.
    Coon, Hilary
    Guthery, Stephen L.
    Voelkerding, Karl V.
    Margraf, Rebecca L.
    Durtschi, Jacob D.
    Tavtigian, Sean V.
    Shankaracharya
    Wu, Wilfred
    Scheet, Paul
    Wang, Shuoguo
    Xing, Jinchuan
    Glusman, Gustavo
    Hubley, Robert
    Li, Hong
    Garg, Vidu
    Moore, Barry
    Hood, Leroy
    Galas, David J.
    Srivastava, Deepak
    Reese, Martin G.
    Jorde, Lynn B.
    Yandell, Mark
    Huff, Chad D.
    NATURE BIOTECHNOLOGY, 2014, 32 (07) : 663 - +
  • [44] The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data (vol 100, pg 193, 2017)
    He, Zongxiao
    Zhang, Di
    Renton, Alan E.
    Li, Biao
    Zhao, Linhai
    Wang, Gao T.
    Goate, Alison M.
    Mayeux, Richard
    Leal, Suzanne M.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 100 (02) : 371 - 371
  • [45] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Lan Luo
    Judong Shen
    Hong Zhang
    Aparna Chhibber
    Devan V. Mehrotra
    Zheng-Zheng Tang
    Nature Communications, 11
  • [46] A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data
    Hao Hu
    Jared C Roach
    Hilary Coon
    Stephen L Guthery
    Karl V Voelkerding
    Rebecca L Margraf
    Jacob D Durtschi
    Sean V Tavtigian
    Wilfred Shankaracharya
    Paul Wu
    Shuoguo Scheet
    Jinchuan Wang
    Gustavo Xing
    Robert Glusman
    Hong Hubley
    Vidu Li
    Barry Garg
    Leroy Moore
    David J Hood
    Deepak Galas
    Martin G Srivastava
    Lynn B Reese
    Mark Jorde
    Chad D Yandell
    Nature Biotechnology, 2014, 32 : 663 - 669
  • [47] FUNCTIONAL ANALYSIS OF LDLR VARIANTS USING AUTOMATED SYSTEMS TO IMPROVE RARE-VARIANT ASSOCIATION STUDIES AND RISK ASSESSMENT IN HYPERCHOLESTEROLEMIA
    Islam, M. M.
    Beleon, A.
    Hlushchenko, I.
    Tamlander, M.
    Horvath, P.
    Ripatti, S.
    Pfisterer, S.
    ATHEROSCLEROSIS, 2023, 379
  • [48] Functional analysis of LDLR variants using automated systems to improve rare-variant association studies and risk assessment in hypercholesterolemia
    Isalm, Mohammad Majharul
    Hlushchenko, Iryna
    Tamlander, Max
    Ripatti, Samuli
    Pfisterer, Simon
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 59 - 59
  • [49] Excalibur: A new ensemble method based on an optimal combination of aggregation tests for rare-variant association testing for sequencing data
    Boutry, Simon
    Helaers, Raphael
    Lenaerts, Tom
    Vikkula, Miikka
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (09)
  • [50] Beyond Rare-Variant Association Testing: Pinpointing Rare Causal Variants in Case-Control Sequencing Study
    Wan-Yu Lin
    Scientific Reports, 6