On detecting maximal quasi antagonistic communities in signed graphs

被引:0
|
作者
Ming Gao
Ee-Peng Lim
David Lo
Philips Kokoh Prasetyo
机构
[1] East China Normal University,Institute for Data Science and Engineering
[2] Singapore Management University,School of Information Systems
来源
关键词
Signed graph; Bi-clique; Quasi antagonistic community; Enumeration tree; Power law distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Many networks can be modeled as signed graphs. These include social networks, and relationships/interactions networks. Detecting sub-structures in such networks helps us understand user behavior, predict links, and recommend products. In this paper, we detect dense sub-structures from a signed graph, called quasi antagonistic communities (QACs). An antagonistic community consists of two groups of users expressing positive relationships within each group but negative relationships across groups. Instead of requiring complete set of negative links across its groups, a QAC allows a small number of inter-group negative links to be missing. We propose an algorithm, Mascot, to find all maximal quasi antagonistic communities (MQACs). Mascot consists of two stages: pruning and enumeration stages. Based on the properties of QAC, we propose four pruning rules to reduce the size of candidate graphs in the pruning stage. We use an enumeration tree to enumerate all strongly connected subgraphs in a top–down fashion in the second stage before they are used to construct MQACs. We have conducted extensive experiments using synthetic signed graphs and two real networks to demonstrate the efficiency and accuracy of the Mascot algorithm. We have also found that detecting MQACs helps us to predict the signs of links.
引用
收藏
页码:99 / 146
页数:47
相关论文
共 50 条
  • [21] Signed distance in signed graphs
    Hameed, Shahul K.
    Shijin, T. V.
    Soorya, P.
    Germina, K. A.
    Zaslavsky, Thomas
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 236 - 247
  • [22] Information integration for detecting communities In attributed graphs
    Cruz, Juan David
    Bothorel, Cecile
    2013 FIFTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2013, : 62 - 67
  • [23] On Effectively Finding Maximal Quasi-cliques in Graphs
    Brunato, Mauro
    Hoos, Holger H.
    Battiti, Roberto
    LEARNING AND INTELLIGENT OPTIMIZATION, 2008, 5313 : 41 - +
  • [24] Balanced Subeulerian Signed Graphs and Signed Line Graphs
    Juan LIU
    Hong YANG
    Xindong ZHANG
    Hongjian LAI
    Journal of Mathematical Research with Applications, 2024, 44 (01) : 7 - 17
  • [25] Maximal Quasi-Cliques Mining in Uncertain Graphs
    Qiao, Lianpeng
    Li, Rong-Hua
    Zhang, Zhiwei
    Yuan, Ye
    Wang, Guoren
    Qin, Hongchao
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 37 - 50
  • [26] SIGNED GRAPHS
    ZASLAVSKY, T
    DISCRETE APPLIED MATHEMATICS, 1982, 4 (01) : 47 - 74
  • [28] Connected signed graphs L-cospectral to signed ∞-graphs
    Belardo, Francesco
    Brunetti, Maurizio
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2410 - 2426
  • [29] Signed degree sets in signed graphs
    S. Pirzada
    T. A. Naikoo
    F. A. Dar
    Czechoslovak Mathematical Journal, 2007, 57 : 843 - 848
  • [30] Signed degree sequences of signed graphs
    Yan, JH
    Lih, KW
    Kuo, D
    Chang, GJ
    JOURNAL OF GRAPH THEORY, 1997, 26 (02) : 111 - 117