Holographic Characterisation of Locally Anti-de Sitter Spacetimes

被引:0
|
作者
Alex McGill
机构
[1] Queen Mary University of London,School of Mathematical Sciences
来源
Annales Henri Poincaré | 2023年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that an (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensional asymptotically anti-de Sitter solution of the Einstein-vacuum equations is locally isometric to pure anti-de Sitter spacetime near a region of the conformal boundary if and only if the boundary metric is conformally flat and (for n≠4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ne 4$$\end{document}) the boundary stress–energy tensor vanishes, subject to (i) sufficient (finite) regularity in the metric and (ii) the satisfaction of a conformally invariant geometric criterion on the boundary region. A key tool in the proof is the Carleman estimate of Chatzikaleas and Shao (Commun Math Phys, 2022)—a generalisation of previous work by the author with McGill and Shao in (Class Quant Gravity 38(5), 2020)—which is applied to prove a unique continuation result for the Weyl curvature at the conformal boundary given vanishing to sufficiently high order over the boundary region.
引用
收藏
页码:2137 / 2181
页数:44
相关论文
共 50 条
  • [41] Flat limit of three dimensional asymptotically anti-de Sitter spacetimes
    Barnich, Glenn
    Gomberoff, Andres
    Gonzalez, Hernan A.
    [J]. PHYSICAL REVIEW D, 2012, 86 (02):
  • [42] Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes
    Paul M. Chesler
    Laurence G. Yaffe
    [J]. Journal of High Energy Physics, 2014
  • [43] Holographic entanglement entropy for noncommutative anti-de Sitter space
    Momeni, Davood
    Raza, Muhammad
    Myrzakulov, Ratbay
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (12)
  • [44] A rotating cylinder in an asymptotically locally anti-de Sitter background
    Griffiths, J. B.
    Santos, N. O.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (12)
  • [45] Conserved charges for gravity with locally anti-de Sitter asymptotics
    Aros, R
    Contreras, M
    Olea, R
    Troncoso, R
    Zanelli, J
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (08) : 1647 - 1650
  • [46] A note on blow-up results for semilinear wave equations in de Sitter and anti-de Sitter spacetimes
    Palmieri, Alessandro
    Takamura, Hiroyuki
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [47] Impulsive waves in de Sitter and anti-de Sitter spacetimes generated by null particles with an arbitrary multipole structure
    Podolsky, J
    Griffiths, JB
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) : 453 - 463
  • [48] Dynamical charged black hole spontaneous scalarization in anti-de Sitter spacetimes
    Zhang, Cheng-Yong
    Liu, Peng
    Liu, Yun-Qi
    Niu, Chao
    Wang, Bin
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [49] Charged null fluid collapse in anti-de Sitter spacetimes and naked singularities
    Ghosh, SG
    [J]. PHYSICAL REVIEW D, 2000, 62 (12)
  • [50] On the existence of turning points in d-dimensional Schwarzschild-de Sitter and Anti-de Sitter spacetimes
    Béssa, CHG
    Lima, JAS
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (07): : 1217 - 1221