Hydraulic fracture height containment is a critical issue in the development of unconventional reservoirs. The extent of fracture height growth depends on a variety of factors, particularly stress and stiffness contrasts between adjacent layers. Accurate simulation of fracture growth and containment requires a reliable fracturing criterion. The virtual crack closure technique (VCCT) is a widely used method for computing energy release rate. However, it is based on the assumption that a small crack extension does not significantly alter the state of the crack tip, which is generally not the case when a fracture crosses strong stress and/or stiffness contrasts. In this work, we assess the applicability and accuracy of a modified virtual crack closure technique (MVCCT) for a fluid-driven fracture in breaking through interfaces with significant stress and/or stiffness contrasts, through comparisons with analytical and reference numerical solutions. The results show that significant error could occur when the fracture tip is very near or at stress/stiffness interfaces. However, this error is localized to the interface and proves to be inconsequential to the predicted penetration depth into the rock layer beyond the interface. This study validates the applicability of MVCCT in 3D hydraulic fracturing simulation in strongly heterogeneous rock formations.
机构:
China Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R ChinaChina Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
Wang, Tianhao
Zhou, Fujian
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R ChinaChina Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
机构:
China Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China
China Univ Geosci Beijing, Sch Energy Resources, 29 Xueyuan Rd, Beijing 100083, Peoples R ChinaChina Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China
Meng, Ya
Li, Zhiping
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China
China Univ Geosci Beijing, Sch Energy Resources, 29 Xueyuan Rd, Beijing 100083, Peoples R ChinaChina Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China
Li, Zhiping
Lai, Fengpeng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China
China Univ Geosci Beijing, Sch Energy Resources, 29 Xueyuan Rd, Beijing 100083, Peoples R ChinaChina Univ Geosci Beijing, Beijing Key Laboratsssssory Geol Evaluat & Dev Un, Beijing 100083, Peoples R China