The network pharmacology study and molecular docking to investigate the potential mechanism of Acoritataninowii Rhizoma against Alzheimer's Disease

被引:0
|
作者
Zhi-Kun Qiu
Bai-Xian Zhou
Jiali Pang
Wei-qiang Zeng
Han-biao Wu
Fan Yang
机构
[1] The First Affiliated Hospital of Guangdong Pharmaceutical University,Key Specialty of Clinical Pharmacy
[2] Guangdong Pharmaceutical University,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics
[3] Guangdong Pharmaceutical University,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development
[4] Shunde Women and Children’s Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan),undefined
来源
Metabolic Brain Disease | 2023年 / 38卷
关键词
Alzheimer's Disease; Acoritataninowii Rhizoma; Network pharmacology; Molecular docking; TCM;
D O I
暂无
中图分类号
学科分类号
摘要
Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.
引用
收藏
页码:1937 / 1962
页数:25
相关论文
共 50 条
  • [21] Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification
    He, Shasha
    He, Xuhua
    Pan, Shujuan
    Jiang, Wenwen
    MOLECULES, 2023, 28 (18):
  • [22] Exploring Acori Tatarinowii Rhizoma and Polygalae Radix in Alzheimer's: Network pharmacology and molecular docking analysis
    Tong, Tianhao
    Cheng, Bin
    Tie, Songyan
    Ouyang, Dan
    Cao, Jianzhong
    MEDICINE, 2024, 103 (15) : E37740
  • [23] Investigating the Potential Anti-Alzheimer's Disease Mechanism of Marine Polyphenols: Insights from Network Pharmacology and Molecular Docking
    Youn, Kumju
    Ho, Chi-Tang
    Jun, Mira
    MARINE DRUGS, 2023, 21 (11)
  • [24] An integrated network pharmacology, molecular docking and experiment validation study to investigate the potential mechanism of Isobavachalcone in the treatment of osteoarthritis
    Fan, Yong
    Yin, Li
    Zhong, Xugang
    He, Zeju
    Meng, Xiang
    Chai, Fang
    Kong, Mingxiang
    Zhang, Qiong
    Xia, Chen
    Tong, Yu
    Bi, Qing
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 326
  • [25] Study of the multitarget mechanism of Astragalus (HUANGQI) in the treatment of Alzheimer's disease based on network pharmacology and molecular docking technology
    Lv, Feng
    Sun, Mei
    Qin, Chunmeng
    Du, Dan
    Zheng, Xiangru
    Li, Wenjun
    PHARMACEUTICAL BIOLOGY, 2024, 62 (01) : 634 - 647
  • [26] Network Pharmacology and Molecular Docking Perspectives into Lignans for Alzheimer's Disease Treatment
    Sirin, Seda
    Dolanbay, Serap Nigdelioglu
    KSU TARIM VE DOGA DERGISI-KSU JOURNAL OF AGRICULTURE AND NATURE, 2024, 27 (01): : 35 - 58
  • [27] Elucidating the Molecular Targets and Mechanisms of Chlorogenic Acid Against Alzheimer's Disease via Network Pharmacology and Molecular Docking
    Liu, Xinxin
    Wang, Yabo
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (09) : 1329 - 1342
  • [28] Advanced network pharmacology and molecular docking-based mechanism study to explore the multi-target pharmacological mechanism of Cymbopogon citratus against Alzheimer's disease
    Fatima, Kinza
    Ashfaq, Usman Ali
    ul Qamar, Muhammad Tahir
    Asif, Muhammad
    Haque, Asma
    Qasim, Muhammad
    Muhseen, Ziyad Tariq
    Noor, Fatima
    Sadaqat, Muhammad
    Alamri, Mubarak A.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2024, 165 : 466 - 477
  • [29] A Study on the Potential Mechanism of Shujin Dingtong Recipe against Osteoarthritis Based on Network Pharmacology and Molecular Docking
    Yuan Z.-Z.
    Yang Z.
    Wu S.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [30] Exploration of the Molecular Mechanism of Polygonati Rhizoma in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking
    Zhao, Jinlong
    Lin, Fangzheng
    Liang, Guihong
    Han, Yanhong
    Xu, Nanjun
    Pan, Jianke
    Luo, Minghui
    Yang, Weiyi
    Zeng, Lingfeng
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12