Analytic Solutions and Singularity Formation for the Peakon b-Family Equations

被引:0
|
作者
G. M. Coclite
F. Gargano
V. Sciacca
机构
[1] Departimento di Matematica,
[2] Dipartimento di Matematica e Informatica,undefined
来源
关键词
Spectral analysis; Complex singularities; -family equation; Analytic solution; Abstract Cauchy-Kowalewski theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the well-posedness of the b-family equation in analytic function spaces. Using the Abstract Cauchy-Kowalewski theorem we prove that the b-family equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic and it belongs to Hs with s>3/2, and the momentum density u0−u0,xx does not change sign, we prove that the solution stays analytic globally in time, for b≥1. Using pseudospectral numerical methods, we study, also, the singularity formation for the b-family equations with the singularity tracking method. This method allows us to follow the process of the singularity formation in the complex plane as the singularity approaches the real axis, estimating the rate of decay of the Fourier spectrum.
引用
收藏
页码:419 / 434
页数:15
相关论文
共 50 条