Symmetric Constellations of Satellites Moving Around a Central Body of Large Mass

被引:0
|
作者
Marco Fenucci
Giovanni Federico Gronchi
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] University of Belgrade,Department of Astronomy, Faculty of Mathematics
关键词
N-body problem; Periodic solutions; Choreographies; -convergence; Variational methods; 70F10; 34C25; 37N05; 37J50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a (1+N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+N)$$\end{document}-body problem in which one particle has mass m0≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0 \gg 1$$\end{document} and the remaining N have unitary mass. We can assume that the body with larger mass (central body) is at rest at the origin, coinciding with the center of mass of the N bodies with smaller masses (satellites). The interaction force between two particles is defined through a potential of the form U∼1rα,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} U \sim \frac{1}{r^\alpha }, \end{aligned}$$\end{document}where α∈[1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [1,2)$$\end{document} and r is the distance between the particles. Imposing symmetry and topological constraints, we search for periodic orbits of this system by variational methods. Moreover, we use Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence theory to study the asymptotic behaviour of these orbits, as the mass of the central body increases. It turns out that the Lagrangian action functional Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-converges to the action functional of a Kepler problem, defined on a suitable set of loops. In some cases, minimizers of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-limit problem can be easily found, and they are useful to understand the motion of the satellites for large values of m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0$$\end{document}. We discuss some examples, where the symmetry is defined by an action of the groups Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} , Z2×Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2 \times {\mathbb {Z}}_2$$\end{document} and the rotation groups of Platonic polyhedra on the set of loops.
引用
收藏
页码:1511 / 1559
页数:48
相关论文
共 50 条
  • [21] Charged Particles Moving around a Spherically Symmetric Dilatonic Black Hole
    Lungu, Vitalie
    Dariescu, Marina-Aura
    Dariescu, Ciprian
    Stelea, Cristian
    ADVANCES IN HIGH ENERGY PHYSICS, 2024, 2024
  • [22] Impact-generated dust clouds around planetary satellites: spherically symmetric case
    Krivov, AV
    Sremcevic, M
    Spahn, F
    Dikarev, VV
    Kholshevnikov, KV
    PLANETARY AND SPACE SCIENCE, 2003, 51 (03) : 251 - 269
  • [23] Dynamics around non-spherical symmetric bodies - I. The case of a spherical body with mass anomaly
    Madeira, G.
    Winter, S. M. Giuliatti
    Ribeiro, T.
    Winter, O. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (01) : 1450 - 1469
  • [24] MOTION OF A SATELLITE AROUND AN UNSYMMETRICAL CENTRAL BODY
    NEWTON, RR
    JOURNAL OF APPLIED PHYSICS, 1959, 30 (01) : 115 - 117
  • [25] Improving international governance of space debris in the era of large constellations of small satellites and China's response
    Yang, Kuan
    Wu, Yulin
    ADVANCES IN SPACE RESEARCH, 2023, 72 (07) : 2607 - 2615
  • [26] Symmetric Reconfiguration Planning Algorithm of Combination Body of Micro-Nano Satellites
    Kang G.-H.
    Liu Q.-X.
    Wu J.-Q.
    Wang Q.
    1600, China Spaceflight Society (41): : 937 - 947
  • [27] Steady Flow Around a Floating Body: The Rotationally Symmetric Case
    Bemelmans, Josef
    Kyed, Mads
    ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, : 43 - 54
  • [28] Stokes Flow around Rotating Axially Symmetric Pervious Body
    Srivastava, D. K.
    JOURNAL OF APPLIED FLUID MECHANICS, 2013, 6 (03) : 435 - 442
  • [29] Immersed boundary method for flow around an arbitrarily moving body
    Kim, D
    Choi, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) : 662 - 680
  • [30] HELMHOLTZ DECOMPOSITION AND SEMIGROUP THEORY TO THE FLUID AROUND A MOVING BODY
    Bae, Hyeong-Ohk
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 661 - 676