Symmetric Constellations of Satellites Moving Around a Central Body of Large Mass

被引:0
|
作者
Marco Fenucci
Giovanni Federico Gronchi
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] University of Belgrade,Department of Astronomy, Faculty of Mathematics
关键词
N-body problem; Periodic solutions; Choreographies; -convergence; Variational methods; 70F10; 34C25; 37N05; 37J50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a (1+N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+N)$$\end{document}-body problem in which one particle has mass m0≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0 \gg 1$$\end{document} and the remaining N have unitary mass. We can assume that the body with larger mass (central body) is at rest at the origin, coinciding with the center of mass of the N bodies with smaller masses (satellites). The interaction force between two particles is defined through a potential of the form U∼1rα,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} U \sim \frac{1}{r^\alpha }, \end{aligned}$$\end{document}where α∈[1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [1,2)$$\end{document} and r is the distance between the particles. Imposing symmetry and topological constraints, we search for periodic orbits of this system by variational methods. Moreover, we use Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence theory to study the asymptotic behaviour of these orbits, as the mass of the central body increases. It turns out that the Lagrangian action functional Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-converges to the action functional of a Kepler problem, defined on a suitable set of loops. In some cases, minimizers of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-limit problem can be easily found, and they are useful to understand the motion of the satellites for large values of m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0$$\end{document}. We discuss some examples, where the symmetry is defined by an action of the groups Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} , Z2×Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2 \times {\mathbb {Z}}_2$$\end{document} and the rotation groups of Platonic polyhedra on the set of loops.
引用
收藏
页码:1511 / 1559
页数:48
相关论文
共 50 条
  • [1] Symmetric Constellations of Satellites Moving Around a Central Body of Large Mass
    Fenucci, Marco
    Gronchi, Giovanni Federico
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1511 - 1559
  • [2] Characteristics of crosslinks between satellites in large symmetric constellations
    Lang, TJ
    ASTRODYNAMICS 1999, PTS 1-3, 2000, 103 : 207 - 217
  • [3] Safety considerations for large constellations of satellites
    Lewis, Hugh G.
    Skelton, Georgia
    JOURNAL OF SPACE SAFETY ENGINEERING, 2024, 11 (03): : 439 - 445
  • [4] Radiation Properties of Moving Constellations of (nano) Satellites: A Complexity Study
    Bruinsma, Wessel P.
    Hes, Robin P.
    Bosma, Sjoerd
    Lager, Loan E.
    Bentum, Mark J.
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [5] Risk to space sustainability from large constellations of satellites
    Virgili, B. Bastida
    Dolado, J. C.
    Lewis, H. G.
    Radtke, J.
    Krag, H.
    Revelin, B.
    Cazaux, C.
    Colombo, C.
    Crowther, R.
    Metz, M.
    ACTA ASTRONAUTICA, 2016, 126 : 154 - 162
  • [6] THE ROLE OF LARGE CONSTELLATIONS OF SMALL SATELLITES IN EMERGENCY RESPONSE SITUATIONS
    Weaver, Oesa A.
    Kerekes, John P.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4200 - 4203
  • [7] On the Symmetric Central Configurations of Three Coorbital Satellites
    Jian Chen
    Mingfang Yang
    Peng Bi
    Liping Zeng
    Nan Yao
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [8] On the Symmetric Central Configurations of Three Coorbital Satellites
    Chen, Jian
    Yang, Mingfang
    Bi, Peng
    Zeng, Liping
    Yao, Nan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [9] Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions
    Curzi, Giacomo
    Modenini, Dario
    Tortora, Paolo
    AEROSPACE, 2020, 7 (09)
  • [10] CONTAINMENT OF A DIFFUSE IONIZED MASS ORBITING AROUND A MAGNETIZED CENTRAL BODY
    BANFI, V
    MOON AND THE PLANETS, 1982, 27 (02): : 165 - 177