Edge even graceful labeling of some graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
机构
[1] Suez University,Department of Mathematics, Faculty of Science
关键词
Edge-even graceful labeling; Flag graph FL; Double fan graph ; Prism graph; The flower graph FL(; ); 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-019-0025-x
中图分类号
学科分类号
摘要
Edge even graceful labeling is a new type of labeling since it was introduced in 2017 by Elsonbaty and Daoud (Ars Combinatoria 130:79–96, 2017). In this paper, we obtained an edge even graceful labeling for some path-related graphs like Y- tree, the double star Bn,m, the graph 〈K1,2n:K1,2m〉, the graph P2n−1⊙K2m¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ ~P_{2n-1}\odot \overline { K_{2m}}~ $\end{document}, and double fan graph F2,n. Also, we showed that some cycle-related graphs like the prism graph ∏n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ ~\prod _{n}~ $\end{document}, the graph Cnn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ ~C_{n}\left (\frac {n}{2}\right)~ $\end{document}, the flag FLn, the graph K2⊙Cn, the flower graph FL(n), and the double cycle {Cn,n} are edge even graphs.
引用
收藏
相关论文
共 50 条
  • [31] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2011, 99 : 225 - 242
  • [32] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2013, 108 : 515 - 532
  • [33] Graceful Labeling of Generalized Theta graphs
    G. Sathiamoorthy
    T. N. Janakiraman
    National Academy Science Letters, 2018, 41 : 121 - 122
  • [34] A new graceful labeling for pendant graphs
    Alessandra Graf
    Aequationes mathematicae, 2014, 87 : 135 - 145
  • [35] Even vertex odd mean labeling of some graphs
    Selvaraj, R.
    Vidyanandini, S.
    Nayak, Soumya Ranjan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (07): : 2169 - 2177
  • [36] Some α-graphs and odd graceful graphs
    Seoud, M. A.
    Helmi, E. F.
    ARS COMBINATORIA, 2011, 101 : 385 - 404
  • [37] PRIME EDGE MAGIC LABELING FOR SOME GRAPHS
    Hussain, R. Jahir
    Selvan, J. Senthamizh
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (06): : 1093 - 1100
  • [38] EDGE PRODUCT CORDIAL LABELING OF SOME GRAPHS
    Prajapati, U. M.
    Patel, N. B.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2019, 18 (01) : 69 - 76
  • [39] On Modular Edge-Graceful Graphs
    Fujie-Okamoto, Futaba
    Jones, Ryan
    Kolasinski, Kyle
    Zhang, Ping
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 901 - 912
  • [40] Super edge magic graceful graphs
    Marimuthu, G.
    Balakrishnan, M.
    INFORMATION SCIENCES, 2014, 287 : 140 - 151