Edge even graceful labeling is a new type of labeling since it was introduced in 2017 by Elsonbaty and Daoud (Ars Combinatoria 130:79–96, 2017). In this paper, we obtained an edge even graceful labeling for some path-related graphs like Y- tree, the double star Bn,m, the graph 〈K1,2n:K1,2m〉, the graph P2n−1⊙K2m¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ ~P_{2n-1}\odot \overline { K_{2m}}~ $\end{document}, and double fan graph F2,n. Also, we showed that some cycle-related graphs like the prism graph ∏n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ ~\prod _{n}~ $\end{document}, the graph Cnn2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ ~C_{n}\left (\frac {n}{2}\right)~ $\end{document}, the flag FLn, the graph K2⊙Cn, the flower graph FL(n), and the double cycle {Cn,n} are edge even graphs.