Projections and Angle Sums of Belt Polytopes and Permutohedra

被引:0
|
作者
Thomas Godland
Zakhar Kabluchko
机构
[1] Westfälische Wilhelms-Universität Münster,Institut für Mathematische Stochastik
来源
Results in Mathematics | 2023年 / 78卷
关键词
Permutohedra; belt polytopes; -vector; projections; normal fans; polyhedral cones; Conic intrinsic volumes; Grassmann angles; Stirling numbers; Hyperplane arrangements; Weyl chambers; reflection arrangements; characteristic polynomials; zonotopes; Primary 52A22; 60D05; Secondary 11B73; 51F15; 52B05; 52B11; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let P⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb {R}^n$$\end{document} be a belt polytope, that is a polytope whose normal fan coincides with the fan of some hyperplane arrangement A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. Also, let G:Rn→Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G:\mathbb {R}^n\rightarrow \mathbb {R}^d$$\end{document} be a linear map of full rank whose kernel is in general position with respect to the faces of P. We derive a formula for the number of j-faces of the “projected” polytope GP in terms of the j-th level characteristic polynomial of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. In particular, we show that the face numbers of GP do not depend on the linear map G provided a general position assumption is satisfied. Furthermore, we derive formulas for the sum of the conic intrinsic volumes and Grassmann angles of the tangent cones of P at all of its j-faces. We apply these results to permutohedra of types A and B, which yields closed formulas for the face numbers of projected permutohedra and the generalized angle sums of permutohedra in terms of Stirling numbers of both kinds and their B-analogues.
引用
收藏
相关论文
共 50 条
  • [1] Projections and Angle Sums of Belt Polytopes and Permutohedra
    Godland, Thomas
    Kabluchko, Zakhar
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [2] Angle Sums of Random Polytopes
    Godland, Thomas
    Kabluchko, Zakhar
    Zaporozhets, Dmitry
    MICHIGAN MATHEMATICAL JOURNAL, 2023, 73 (04) : 815 - 842
  • [3] ANGLE SUMS OF CONVEX POLYTOPES
    PERLES, MA
    SHEPHARD, GC
    MATHEMATICA SCANDINAVICA, 1967, 21 (02) : 199 - &
  • [4] On dihedral angle sums and number of facets for product polytopes
    Korotov, Sergey
    Vatne, Jon Eivind
    JOURNAL OF GEOMETRY, 2024, 115 (03)
  • [5] CAYLEY SUMS AND MINKOWSKI SUMS OF LATTICE POLYTOPES
    Tsuchiya, Akiyoshi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1348 - 1357
  • [6] Fiber polytopes for the projections between cyclic polytopes
    Athanasiadis, CA
    De Loera, JA
    Reiner, V
    Santos, F
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 19 - 47
  • [7] Riemann sums over polytopes
    Guillemin, Victor
    Sternberg, Shlomo
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (07) : 2183 - 2195
  • [8] SUMS OF PROJECTIONS
    SPIEGEL, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 187 : 239 - 249
  • [9] SUMS OF PROJECTIONS
    STAMPFLI, JG
    DUKE MATHEMATICAL JOURNAL, 1964, 31 (03) : 455 - &
  • [10] On sums of projections
    Kruglyak, SA
    Rabanovich, VI
    Samoilenko, YS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (03) : 182 - 195