共 50 条
Projections and Angle Sums of Belt Polytopes and Permutohedra
被引:0
|作者:
Thomas Godland
Zakhar Kabluchko
机构:
[1] Westfälische Wilhelms-Universität Münster,Institut für Mathematische Stochastik
来源:
关键词:
Permutohedra;
belt polytopes;
-vector;
projections;
normal fans;
polyhedral cones;
Conic intrinsic volumes;
Grassmann angles;
Stirling numbers;
Hyperplane arrangements;
Weyl chambers;
reflection arrangements;
characteristic polynomials;
zonotopes;
Primary 52A22;
60D05;
Secondary 11B73;
51F15;
52B05;
52B11;
52A55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let P⊂Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P\subset \mathbb {R}^n$$\end{document} be a belt polytope, that is a polytope whose normal fan coincides with the fan of some hyperplane arrangement A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document}. Also, let G:Rn→Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G:\mathbb {R}^n\rightarrow \mathbb {R}^d$$\end{document} be a linear map of full rank whose kernel is in general position with respect to the faces of P. We derive a formula for the number of j-faces of the “projected” polytope GP in terms of the j-th level characteristic polynomial of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document}. In particular, we show that the face numbers of GP do not depend on the linear map G provided a general position assumption is satisfied. Furthermore, we derive formulas for the sum of the conic intrinsic volumes and Grassmann angles of the tangent cones of P at all of its j-faces. We apply these results to permutohedra of types A and B, which yields closed formulas for the face numbers of projected permutohedra and the generalized angle sums of permutohedra in terms of Stirling numbers of both kinds and their B-analogues.
引用
收藏
相关论文