Thermal Effects and Small Signal Modulation of 1.3-μm InAs/GaAs Self-Assembled Quantum-Dot Lasers

被引:0
|
作者
HX Zhao
SF Yoon
CZ Tong
CY Liu
R Wang
Q Cao
机构
[1] Nanyang Technological University,School of Electrical and Electronic Engineering
[2] University of Toronto,Photonics Group, Edward S. Rogers Sr. Department of Electrical and Computer Engineering
[3] Technical University of Berlin,Institute of Solid State Physics
来源
关键词
Molecular beam epitaxy; Temperature; Modulation; Quantum-dots; Semiconductor lasers;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the influence of thermal effects on the high-speed performance of 1.3-μm InAs/GaAs quantum-dot lasers in a wide temperature range (5–50°C). Ridge waveguide devices with 1.1 mm cavity length exhibit small signal modulation bandwidths of 7.51 GHz at 5°C and 3.98 GHz at 50°C. Temperature-dependent K-factor, differential gain, and gain compression factor are studied. While the intrinsic damping-limited modulation bandwidth is as high as 23 GHz, the actual modulation bandwidth is limited by carrier thermalization under continuous wave operation. Saturation of the resonance frequency was found to be the result of thermal reduction in the differential gain, which may originate from carrier thermalization.
引用
收藏
相关论文
共 50 条
  • [1] Thermal Effects and Small Signal Modulation of 1.3-μm InAs/GaAs Self-Assembled Quantum-Dot Lasers
    Zhao, H. X.
    Yoon, S. F.
    Tong, C. Z.
    Liu, C. Y.
    Wang, R.
    Cao, Q.
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 5
  • [2] Effect of Carrier Transport on Modulation Bandwidth of 1.3-μm InAs/GaAs Self-Assembled Quantum-Dot Lasers
    Ishida, Mitsuru
    Tanaka, Yu
    Takada, Kan
    Yamamoto, Tsuyoshi
    Song, Hai-zhi
    Nakata, Yoshiaki
    Yamaguchi, Masaomi
    Nishi, Kenichi
    Sugawara, Mitsuru
    Arakawa, Yasuhiko
    22ND IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE, 2010, : 174 - +
  • [3] Characterization and Analysis of 1.3-μm InAs/InGaAs Self-Assembled Quantum Dot Lasers
    Liu, Chongyang
    Wang, Hong
    Meng, Qianqian
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (03) : 446 - 451
  • [4] ENHANCED MAXIMUM MODAL GAIN OF 1.3-μm ANTIMONY MEDIATED InAs SELF-ASSEMBLED QUANTUM-DOT LASERS
    Ishida, M.
    Watanabe, K.
    Kumagai, N.
    Nakata, Y.
    Hatori, N.
    Sudo, H.
    Yamamoto, T.
    Sugawara, M.
    Arakawa, Y.
    2007 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2007, : 555 - 558
  • [5] Recombination mechanisms in 1.3-μm InAs quantum-dot lasers
    Sandall, IC
    Smowton, PM
    Walker, CL
    Liu, HY
    Hopkinson, M
    Mowbray, DJ
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (5-8) : 965 - 967
  • [6] 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates
    Wang, Ting
    Liu, Huiyun
    Lee, Andrew
    Pozzi, Francesca
    Seeds, Alwyn
    OPTICS EXPRESS, 2011, 19 (12): : 11381 - 11386
  • [7] P-Modulation Doped 1.3-μm InAs/GaAs Quantum Dot Lasers
    Yao Z.
    Chen H.
    Wang T.
    Jiang C.
    Zhang Z.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2021, 48 (16):
  • [8] P-Modulation Doped 1.3-μm InAs/GaAs Quantum Dot Lasers
    Yao Zhonghui
    Chen Hongmei
    Wang Tuo
    Jiang Cheng
    Zhang Ziyang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (16):
  • [9] Rate equations for 1.3-μm dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers
    Tong, C. Z.
    Yoon, S. F.
    Ngo, C. Y.
    Liu, C. Y.
    Loke, W. K.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (11-12) : 1175 - 1183
  • [10] Large-Signal Performance of 1.3 μm InAs/GaAs quantum-dot lasers
    Ji, H. M.
    Cao, Y. L.
    Xu, P. F.
    Gu, Y. X.
    Ma, W. Q.
    Liu, Y.
    Wang, X.
    Xie, L.
    Yang, T.
    2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 239 - 240