When are trend–cycle decompositions of GDP reliable?

被引:0
|
作者
Manuel González-Astudillo
John M. Roberts
机构
[1] Federal Reserve Board,Facultad de Ciencias Sociales y Humanísticas
[2] Escuela Superior Politécnica del Litoral,undefined
[3] ESPOL,undefined
来源
Empirical Economics | 2022年 / 62卷
关键词
Unobserved components model; Trend–cycle decomposition; Trend–cycle correlation; Bayesian estimation; C13; C32; C52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we examine the results of GDP trend–cycle decompositions from the estimation of bivariate unobserved components models that allow for correlated trend and cycle innovations. Three competing variables are considered in the bivariate setup along with GDP: the unemployment rate, the inflation rate, and gross domestic income. We find that the unemployment rate is the preferred variable to accompany GDP in the bivariate setup to obtain accurate estimates of its trend–cycle correlation coefficient and the cycle. We show that the key feature of the unemployment rate that allows for reliable estimates of the cycle of GDP is that its nonstationary component is small relative to its cyclical component. Using quarterly GDP and unemployment rate data from 1948:Q1 to 2019:Q1, we obtain a trend–cycle decomposition of GDP that resembles the conventional CBO estimates; we find positively correlated trend and cycle components.
引用
收藏
页码:2417 / 2460
页数:43
相关论文
共 50 条
  • [21] Cycle Decompositions of Complete Multigraphs
    Smith, Benjamin R.
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (02) : 85 - 93
  • [22] Fractional cycle decompositions in hypergraphs
    Joos, Felix
    Kuehn, Marcus
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 425 - 443
  • [23] CYCLE DECOMPOSITIONS OF COMPLETE GRAPHS
    FARRELL, EJ
    DISCRETE MATHEMATICS, 1982, 38 (2-3) : 157 - 162
  • [24] Cycle Decompositions of Complete Multigraphs
    Bryant, Darryn
    Horsley, Daniel
    Maenhaut, Barbara
    Smith, Benjamin R.
    JOURNAL OF COMBINATORIAL DESIGNS, 2011, 19 (01) : 42 - 69
  • [25] Cycle decompositions and train tracks
    Matthews, CA
    Wright, DJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) : 3411 - 3415
  • [26] Cycle decompositions of complete digraphs
    Burgess, A. C.
    Danziger, P.
    Javed, M. T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01): : 1 - 16
  • [27] Cycle decompositions and simulated annealing
    Trouve, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) : 966 - 986
  • [28] Orthogonally Resolvable Cycle Decompositions
    Burgess, A.
    Danziger, P.
    Mendelsohn, E.
    Stevens, B.
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (08) : 328 - 351
  • [29] Cycle decompositions and constructive characterizations
    Heinrich, Irene
    Streicher, Manuel
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (02) : 411 - 428
  • [30] CYCLE DECOMPOSITIONS IN SYMMETRIC GROUP
    FREESE, R
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (09): : 1028 - &