Finding an interval estimation procedure for the variance of a population that achieves a specified confidence level can be problematic. If the distribution of the population is known, then a distribution-dependent interval for the variance can be obtained by considering a power transformation of the sample variance. Simulation results suggest that this method produces intervals for the variance that maintain the nominal probability of coverage for a wide variety of distributions. If the underlying distribution is unknown, then the power itself must be estimated prior to forming the endpoints of the interval. The result is a distribution-free confidence interval estimator of the population variance. Simulation studies indicate that the power transformation method compares favorably to the logarithmic transformation method and the nonparametric bias-corrected and accelerated bootstrap method for moderately sized samples. However, two applications, one in forestry and the other in health sciences, demonstrate that no single method is best for all scenarios.
机构:
Univ. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Garivier, Aurélien
Hadiji, Hédi
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de mathématiques d’Orsay, Université Paris-Saclay, CNRS, Orsay, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Hadiji, Hédi
Ménard, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Inria Lille Nord Europe, Lille, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Ménard, Pierre
Stoltz, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de mathématiques d’Orsay, Université Paris-Saclay, CNRS, Orsay, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France