Formation of hexagonal boron nitride on graphene-covered copper surfaces

被引:0
|
作者
Devashish P. Gopalan
Patrick C. Mende
Sergio C. de la Barrera
Shonali Dhingra
Jun Li
Kehao Zhang
Nicholas A. Simonson
Joshua A. Robinson
Ning Lu
Qingxiao Wang
Moon J. Kim
Brian D’Urso
Randall M. Feenstra
机构
[1] Carnegie Mellon University,Department of Physics
[2] University of Pittsburgh,Department of Physics and Astronomy
[3] The Pennsylvania State University,Department of Materials Science and Engineering and Center for Two
[4] The University of Texas at Dallas,Dimensional and Layered Materials
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Graphene-covered copper surfaces have been exposed to borazine, (BH)3(NH)3, with the resulting surfaces characterized by low-energy electron microscopy. Although the intent of the experiment was to form hexagonal boron nitride (h-BN) on top of the graphene, such layers were not obtained. Rather, in isolated surface areas, h-BN is found to form µm-size islands that substitute for the graphene. Additionally, over nearly the entire surface, the properties of the layer that was originally graphene is observed to change in a manner that is consistent with the formation of a mixed h-BN/graphene alloy, i.e., h-BNC alloy. Furthermore, following the deposition of the borazine, a small fraction of the surface is found to consist of bare copper, indicating etching of the overlying graphene. The inability to form h-BN layers on top of graphene is discussed in terms of the catalytic behavior of the underlying copper surface and the decomposition of the borazine on top of the graphene.
引用
收藏
页码:945 / 958
页数:13
相关论文
共 50 条
  • [31] Role of boron carbide in carbothermic formation of hexagonal boron nitride
    Camurlu, H. E.
    Sevinc, N.
    Topkaya, Y.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (15) : 4921 - 4927
  • [32] Thermal conductance of graphene/hexagonal boron nitride heterostructures
    Lu, Simon
    McGaughey, Alan J. H.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
  • [33] Electronic structure of graphene nanoribbons on hexagonal boron nitride
    Gani, Yohanes S.
    Abergel, D. S. L.
    Rossi, Enrico
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [34] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [35] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [36] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [37] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6
  • [38] Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices
    Garcia, Andrei G. F.
    Neumann, Michael
    Amet, Francois
    Williams, James R.
    Watanabe, Kenji
    Taniguchi, Takashi
    Goldhaber-Gordon, David
    NANO LETTERS, 2012, 12 (09) : 4449 - 4454
  • [39] Thermally Induced Graphene Rotation on Hexagonal Boron Nitride
    Wang, Duoming
    Chen, Guorui
    Li, Chaokai
    Cheng, Meng
    Yang, Wei
    Wu, Shuang
    Xie, Guibai
    Zhang, Jing
    Zhao, Jing
    Lu, Xiaobo
    Chen, Peng
    Wang, Guole
    Meng, Jianling
    Tang, Jian
    Yang, Rong
    He, Congli
    Liu, Donghua
    Shi, Dongxia
    Watanabe, Kenji
    Taniguchi, Takashi
    Feng, Ji
    Zhang, Yuanbo
    Zhang, Guangyu
    PHYSICAL REVIEW LETTERS, 2016, 116 (12)
  • [40] Origin of band gaps in graphene on hexagonal boron nitride
    Jung, Jeil
    DaSilva, Ashley M.
    MacDonald, Allan H.
    Adam, Shaffique
    NATURE COMMUNICATIONS, 2015, 6