Bounded indecomposable semigroups of non-negative matrices

被引:0
|
作者
Hailegebriel Gessesse
Alexey I. Popov
Heydar Radjavi
Eugeniu Spinu
Adi Tcaciuc
Vladimir G. Troitsky
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] University of Waterloo,Department of Pure Mathematics
[3] Grant MacEwan College,Mathematics and Statistics Department
来源
Positivity | 2010年 / 14卷
关键词
Non-negative matrices; Semigroups of matrices; Positive operators; Primary 15A48; Secondary 20M20; 47D03; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
A semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{S}}$$\end{document} of non-negative n × n matrices is indecomposable if for every pair i, j ≤ n there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S\in\mathfrak{S}}$$\end{document} such that (S)ij ≠ 0. We show that if there is a pair k, l such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(S)_{kl} : S\in\mathfrak{S}\}}$$\end{document} is bounded then, after a simultaneous diagonal similarity, all the entries are in [0, 1]. We also provide quantitative versions of this result, as well as extensions to infinite-dimensional cases.
引用
收藏
页码:383 / 394
页数:11
相关论文
共 50 条