Bounded indecomposable semigroups of non-negative matrices

被引:0
|
作者
Hailegebriel Gessesse
Alexey I. Popov
Heydar Radjavi
Eugeniu Spinu
Adi Tcaciuc
Vladimir G. Troitsky
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] University of Waterloo,Department of Pure Mathematics
[3] Grant MacEwan College,Mathematics and Statistics Department
来源
Positivity | 2010年 / 14卷
关键词
Non-negative matrices; Semigroups of matrices; Positive operators; Primary 15A48; Secondary 20M20; 47D03; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
A semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{S}}$$\end{document} of non-negative n × n matrices is indecomposable if for every pair i, j ≤ n there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S\in\mathfrak{S}}$$\end{document} such that (S)ij ≠ 0. We show that if there is a pair k, l such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(S)_{kl} : S\in\mathfrak{S}\}}$$\end{document} is bounded then, after a simultaneous diagonal similarity, all the entries are in [0, 1]. We also provide quantitative versions of this result, as well as extensions to infinite-dimensional cases.
引用
收藏
页码:383 / 394
页数:11
相关论文
共 50 条
  • [1] Bounded indecomposable semigroups of non-negative matrices
    Gessesse, Hailegebriel
    Popov, Alexey I.
    Radjavi, Heydar
    Spinu, Eugeniu
    Tcaciuc, Adi
    Troitsky, Vladimir G.
    POSITIVITY, 2010, 14 (03) : 383 - 394
  • [2] Semigroups of non-negative matrices
    Protasov, V. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (06) : 1186 - 1188
  • [3] On decomposability of periodic semigroups of non-negative matrices
    Livshits, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 163 - 174
  • [4] FINITE BIVARIATE DISTRIBUTIONS AND SEMIGROUPS OF NON-NEGATIVE MATRICES
    VEREJONES, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 247 - +
  • [5] Semigroups of non-negative integer-valued matrices
    Baeth, N. R.
    Chen, H.
    Heilbrunn, G.
    Liu, R.
    Young, M.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 1199 - 1219
  • [6] NON-NEGATIVE MATRICES
    PUTNAM, CR
    CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (01): : 59 - +
  • [7] ON GROUPS OF NON-NEGATIVE MATRICES
    FLOR, P
    COMPOSITIO MATHEMATICA, 1969, 21 (04) : 376 - &
  • [8] An inequality for non-negative matrices
    Wang, MW
    Shallit, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 290 (1-3) : 135 - 144
  • [9] EIGENVALUES OF NON-NEGATIVE MATRICES
    PRUITT, WE
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1797 - &
  • [10] Standard triangularization of semigroups of non-negative operators
    MacDonald, G
    Radjavi, H
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) : 161 - 176