Conditions for strong ellipticity and M-eigenvalues

被引:0
|
作者
Liqun Qi
Hui-Hui Dai
Deren Han
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
[2] The City University of Hong Kong,Department of Mathematics
[3] Nanjing Normal University,School of Mathematics and Computer Sciences
来源
关键词
Elasticity tensor; strong ellipticity; M-eigenvalue; Z-eigenvalue; 74B99; 15A18; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.
引用
收藏
相关论文
共 50 条
  • [41] On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials
    Zubov, Leonid M.
    Rudev, Alexander N.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (09): : 1096 - 1102
  • [42] Lack of strong ellipticity in Euclidean quantum gravity
    Avramidi, IG
    Esposito, G
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) : 1141 - 1152
  • [43] Strong ellipticity of transversely isotropic elasticity tensors
    Padovani, C
    MECCANICA, 2002, 37 (06) : 515 - 525
  • [44] A SIMPLE DERIVATION OF NECESSARY AND SUFFICIENT CONDITIONS FOR THE STRONG ELLIPTICITY OF ISOTROPIC HYPERELASTIC MATERIALS IN PLANE-STRAIN
    DAVIES, PJ
    JOURNAL OF ELASTICITY, 1991, 26 (03) : 291 - 296
  • [45] SHARP BOUNDS ON THE MINIMUM M-EIGENVALUE AND STRONG ELLIPTICITY CONDITION OF ELASTICITY Z-TENSORS
    Wang, Chong
    Wang, Gang
    Liu, Lixia
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) : 760 - 772
  • [46] SHARP BOUNDS ON THE MINIMUM M-EIGENVALUE OF ELASTICITY Z-TENSORS AND IDENTIFYING STRONG ELLIPTICITY
    Wang, Gang
    Sun, Linxuan
    Wang, Xueyong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 2114 - 2130
  • [47] STRONG STATIONARY TIMES AND EIGENVALUES
    MATTHEWS, P
    JOURNAL OF APPLIED PROBABILITY, 1992, 29 (01) : 228 - 233
  • [48] Eigenvalues and strong orbit equivalence
    Isabel Cortez, Maria
    Durand, Fabien
    Petite, Samuel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 2419 - 2440
  • [49] Strong ellipticity and progressive waves in elastic materials with voids
    Chirita, Stan
    Ghiba, Ionel-Dumitrel
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2114): : 439 - 458
  • [50] Strong ellipticity for tetragonal system in linearly elastic solids
    Chirita, Stan
    Danescu, Alexandre
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (17) : 4850 - 4859