Conditions for strong ellipticity and M-eigenvalues

被引:0
|
作者
Liqun Qi
Hui-Hui Dai
Deren Han
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
[2] The City University of Hong Kong,Department of Mathematics
[3] Nanjing Normal University,School of Mathematics and Computer Sciences
来源
关键词
Elasticity tensor; strong ellipticity; M-eigenvalue; Z-eigenvalue; 74B99; 15A18; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.
引用
收藏
相关论文
共 50 条
  • [1] Conditions for strong ellipticity and M-eigenvalues
    Qi, Liqun
    Dai, Hui-Hui
    Han, Deren
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 349 - 364
  • [2] Bounds of M-eigenvalues and strong ellipticity conditions for elasticity tensors
    Li, Shigui
    Chen, Zhen
    Liu, Qilong
    Lu, Linzhang
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4544 - 4557
  • [3] Conditions of strong ellipticity and calculations of M-eigenvalues for a partially symmetric tensor
    Zhao, Jianxing
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [4] M-EIGENVALUES OF THE RIEMANN CURVATURE TENSOR
    Xiang, Hua
    Qi, Liqun
    Wei, Yimin
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (08) : 2301 - 2315
  • [5] A direct method for calculating M-eigenvalues of an elasticity tensor
    Jianxing Zhao
    Yanyan Luo
    Caili Sang
    Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 317 - 357
  • [6] A direct method for calculating M-eigenvalues of an elasticity tensor
    Zhao, Jianxing
    Luo, Yanyan
    Sang, Caili
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (01) : 317 - 357
  • [7] M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds
    Yun Miao
    Liqun Qi
    Yimin Wei
    Communications in Mathematical Research, 2020, 36 (03) : 336 - 353
  • [8] M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity
    He, Jun
    Li, Chaoqian
    Wei, Yimin
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [9] New S-Type Bounds of M-Eigenvalues for Elasticity Tensors with Applications
    Zhang, Zhuanzhou
    He, Jun
    Liu, Yanmin
    Ren, Zerong
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Conditions for Strong Ellipticity of Anisotropic Elastic Materials
    Deren Han
    H. H. Dai
    Liqun Qi
    Journal of Elasticity, 2009, 97 : 1 - 13