Difference equations;
Dynamical systems;
Global stability;
Rate of convergence;
Boundedness;
Oscillation;
39A10;
39A23;
39A30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we study the global asymptotic stability of following system of difference equations with quadratic terms: xn+1=A+Bynyn-12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_{n+1}=A+B\frac{y_{n}}{y_{n-1}^{2}}$$\end{document}, yn+1=A+Bxnxn-12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$y_{n+1}=A+B\frac{x_{n}}{x_{n-1}^{2}}$$\end{document} where A and B are positive numbers and the initial values are positive numbers. We also investigate the rate of convergence and oscillation behaviour of the solutions of related system.
机构:
Dept. of Automatic Control Engrg., South China University of Technol., Guangzhou, ChinaDept. of Automatic Control Engrg., South China University of Technol., Guangzhou, China
Liu, S.-T.
Cheng, S.-S.
论文数: 0引用数: 0
h-index: 0
机构:
Dept. of Automatic Control Engrg., South China University of Technol., Guangzhou, ChinaDept. of Automatic Control Engrg., South China University of Technol., Guangzhou, China
Cheng, S.-S.
Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering,
2000,
24
(05):
: 390
-
393