On the global asymptotic stability of a system of difference equations with quadratic terms

被引:0
|
作者
Erkan Taşdemir
机构
[1] Kırklareli University,Pınarhisar Vocational School
关键词
Difference equations; Dynamical systems; Global stability; Rate of convergence; Boundedness; Oscillation; 39A10; 39A23; 39A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the global asymptotic stability of following system of difference equations with quadratic terms: xn+1=A+Bynyn-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=A+B\frac{y_{n}}{y_{n-1}^{2}}$$\end{document}, yn+1=A+Bxnxn-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_{n+1}=A+B\frac{x_{n}}{x_{n-1}^{2}}$$\end{document} where A and B are positive numbers and the initial values are positive numbers. We also investigate the rate of convergence and oscillation behaviour of the solutions of related system.
引用
收藏
页码:423 / 437
页数:14
相关论文
共 50 条
  • [1] On the global asymptotic stability of a system of difference equations with quadratic terms
    Tasdemir, Erkan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 423 - 437
  • [2] Global asymptotic stability of a system of difference equations
    Yalcinkaya, Ibrahim
    Cinar, Cengiz
    Simsek, Dagistan
    APPLICABLE ANALYSIS, 2008, 87 (06) : 677 - 687
  • [3] The global asymptotic stability of a system of difference equations
    Gumus, Mehmet
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (06) : 976 - 991
  • [4] Stability analysis of a three-dimensional system of difference equations with quadratic terms
    Yazlik, Yasin
    Fidanci, Mehmet Cengiz
    Hassani, Murad Khan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2521 - 2539
  • [5] Global asymptotic stability for quadratic fractional difference equation
    DiPippo, Mark
    Janowski, Ed J.
    Kulenovic, Mustafa R. S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [6] Global asymptotic stability for quadratic fractional difference equation
    Mark DiPippo
    Ed J Janowski
    Mustafa RS Kulenović
    Advances in Difference Equations, 2015
  • [7] Global asymptotic stability of a family of difference equations
    Sun, TX
    Xi, HJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) : 724 - 728
  • [8] Global Asymptotic Stability in a Class of Difference Equations
    Xiaofan Yang
    Limin Cui
    Yuan Yan Tang
    Jianqiu Cao
    Advances in Difference Equations, 2007
  • [9] Global asymptotic stability of a family of difference equations
    Yang, Xiaofan
    Tang, Yuan Yan
    Cao, Jianqiu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) : 2643 - 2649
  • [10] Global asymptotic stability for nonlinear difference equations
    Peng, Yuehui
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 67 - 72