Modifications of weighted Monte Carlo algorithms for nonlinear kinetic equations

被引:0
|
作者
Korotchenko M.A. [1 ]
Mikhailov G.A. [1 ]
Rogasinsky S.V. [1 ]
机构
[1] Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090
基金
俄罗斯基础研究基金会;
关键词
Solution to nonlinear Boltzmann and Smoluchowski kinetic equations; Weighted Monte Carlo algorithms;
D O I
10.1134/S0965542507120123
中图分类号
学科分类号
摘要
Test problems for the nonlinear Boltzmann and Smoluchowski kinetic equations are used to analyze the efficiency of various versions of weighted importance modeling as applied to the evolution of multiparticle ensembles. For coagulation problems, a considerable gain in computational costs is achieved via the approximate importance modeling of the "free path" of the ensemble combined with the importance modeling of the index of a pair of interacting particles. A weighted modification of the modeling of the initial velocity distribution was found to be the most efficient for model solutions to the Boltzmann equation. The technique developed can be useful as applied to real-life coagulation and relaxation problems for which the model problems considered give approximate solutions. © 2007 Pleiades Publishing, Ltd.
引用
收藏
页码:2023 / 2033
页数:10
相关论文
共 50 条
  • [1] Value modifications of weighted statistical modelling for solving nonlinear kinetic equations
    Korotchenk, M. A.
    Mikhailov, G. A.
    Rogazinskii, S. V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2007, 22 (05) : 471 - 486
  • [2] Value modifications of weighted statistical modelling for solving nonlinear kinetic equations
    Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
    [J]. Russ J Numer Anal Math Modell, 2007, 5 (471-486):
  • [3] SOLUTION TO NONLINEAR KINETIC-EQUATIONS BY MONTE-CARLO METHOD
    ERMAKOV, SM
    NEKRUTKIN, VV
    PROSHKIN, AJ
    SIZOVA, AF
    [J]. DOKLADY AKADEMII NAUK SSSR, 1976, 230 (02): : 261 - 263
  • [4] Study of weighted Monte Carlo algorithms with branching
    I. N. Medvedev
    G. A. Mikhailov
    [J]. Computational Mathematics and Mathematical Physics, 2009, 49 : 428 - 438
  • [5] Study of weighted Monte Carlo algorithms with branching
    Medvedev, I. N.
    Mikhailov, G. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (03) : 428 - 438
  • [6] USING THE WEIGHTED MONTE-CARLO METHOD FOR SOLVING NONLINEAR INTEGRAL-EQUATIONS
    PLOTNIKOV, MY
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1994, 9 (02) : 121 - 145
  • [7] A Monte Carlo Evaluation of Weighted Community Detection Algorithms
    Gates, Kathleen M.
    Henry, Teague
    Steinley, Doug
    Fair, Damien A.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [8] Stochastic Perturbation Algorithms for Kinetic Monte Carlo Simulations
    Shim, Hyung Jin
    [J]. SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,
  • [9] Kinetic Monte Carlo Algorithms for Active Matter Systems
    Klamser, Juliane U.
    Dauchot, Olivier
    Tailleur, Julien
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [10] Complexity of Monte Carlo algorithms for a class of integral equations
    Dimov, Ivan
    Georgieva, Rayna
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 731 - +