Stochastic Perturbation Algorithms for Kinetic Monte Carlo Simulations

被引:0
|
作者
Shim, Hyung Jin [1 ]
机构
[1] Seoul Natl Univ, 1 Gwanak Ro, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
Kinetic Monte Carlo; Perturbation; Differential Operator Sampling;
D O I
10.1051/snamc/201403407
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accuracy of the kinetic Monte Carlo (KMC) simulations depends on the reliability of transition data used in the calculations. The sensitivity analyses may be useful to quantify the uncertainty of the KMC output and enhance the accuracy by ordering the transition data by importance. I derive a formulation of the differential operator sampling method for the KMC perturbation analysis from the Neumann series solution to the KMC master equation. The effectiveness of the KMC perturbation method is demonstrated in a simplified radioactive decay problem and the Langmuirian adsorption dynamics problem.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Stochastic method for accommodation of equilibrating basins in kinetic Monte Carlo simulations
    Van Siclen, Clinton DeW
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (07)
  • [2] THEORY AND ALGORITHMS FOR MIXED MONTE CARLO-STOCHASTIC DYNAMICS SIMULATIONS
    GUARNIERI, F
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1995, 18 (01) : 25 - 35
  • [3] Stochastic kinetic Monte Carlo algorithms for long-range Hamiltonians
    Mason, DR
    Rudd, RE
    Sutton, AP
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2004, 160 (02) : 140 - 157
  • [4] Kinetic Monte Carlo simulations of precipitation
    Clouet, Emmanuel
    Hin, Celine
    Gendt, Dominique
    Nastar, Maylise
    Soisson, Frederic
    [J]. ADVANCED ENGINEERING MATERIALS, 2006, 8 (12) : 1210 - 1214
  • [5] A SYNOPSIS OF MONTE-CARLO PERTURBATION ALGORITHMS
    RIEF, H
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (01) : 33 - 48
  • [6] Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures
    Chatterjee, A
    Vlachos, DG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (06):
  • [7] Monte-Carlo simulations for stochastic homogenization
    [J]. Z Angew Math Mech ZAMM, Suppl 4 (93):
  • [8] Kinetic Monte Carlo simulations with minimal searching
    Schulze, TP
    [J]. PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036704
  • [9] Monte Carlo Methods for Reactor Kinetic Simulations
    Srivastava, Argala
    Singh, K. P.
    Degweker, S. B.
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2018, 189 (02) : 152 - 170
  • [10] Kinetic Monte Carlo simulations of organic ferroelectrics
    Cornelissen, Tim D.
    Biler, Michal
    Urbanaviciute, Indre
    Norman, Patrick
    Linares, Mathieu
    Kemerink, Martijn
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (03) : 1375 - 1383