Relative Hyperbolicity and Artin Groups

被引:0
|
作者
Ilya Kapovich
Paul Schupp
机构
[1] University of Illinois at Urbana-Champaign,Department of Mathematics
来源
Geometriae Dedicata | 2004年 / 107卷
关键词
relatively hyperbolic; Artin groups;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=⟨ a1,&ldots; , an | aiajai&ldots; = a_ja_ia_j,&ldots; ,i>j⟩ be an Artin group and let mij =mji be the length of each of the sides of the defining relation involving aiand aj. We show if all m_ij ⩾ 7 then G is relatively hyperbolic in the sense of Farb with respect to the collection of its two-generator subgroups 〈ai, aj〉for which m_ij >&infty;.
引用
收藏
页码:153 / 167
页数:14
相关论文
共 50 条
  • [31] On Relative Hyperbolicity for a Group and Relative Quasiconvexity for a Subgroup
    Matsuda, Yoshifumi
    Oguni, Shin-ichi
    Yamagata, Saeko
    TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (01) : 83 - 112
  • [32] EXTENDED ARTIN GROUPS
    VANDERLEK, H
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 117 - 121
  • [33] Rigidity of Coxeter groups and Artin groups
    Brady, N
    McCammond, JP
    Mühlherr, B
    Neumann, WD
    GEOMETRIAE DEDICATA, 2002, 94 (01) : 91 - 109
  • [34] ARTIN GROUPS AND INFINITE COXETER GROUPS
    APPEL, KI
    SCHUPP, PE
    INVENTIONES MATHEMATICAE, 1983, 72 (02) : 201 - 220
  • [35] Rigidity of Coxeter Groups and Artin Groups
    Noel Brady
    Jonathan P. McCammond
    Bernhard Mühlherr
    Walter D. Neumann
    Geometriae Dedicata, 2002, 94 : 91 - 109
  • [36] Cohomology of Coxeter groups and Artin groups
    De Concini, C
    Salvetti, M
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (2-3) : 213 - 232
  • [37] Artin braid groups and homotopy groups
    Li, Jingyan
    Wu, Jie
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 : 521 - 556
  • [38] From Hierarchical to Relative Hyperbolicity
    Russell, Jacob
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (01) : 575 - 624
  • [39] Right-angled Artin subgroups of Artin groups
    Jankiewicz, Kasia
    Schreve, Kevin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 818 - 854
  • [40] Novikov conjectures and relative hyperbolicity
    Goldfarb, B
    MATHEMATICA SCANDINAVICA, 1999, 85 (02) : 169 - 183