Bifurcations, Permanence and Local Behavior of the Plant-Herbivore Model with Logistic Growth of Plant Biomass

被引:0
|
作者
S. Kalabušić
E. Pilav
机构
[1] University of Sarajevo,Department of Mathematics
关键词
Bifurcation; Bistability; Permanence; Plant-herbivore; Stability; 39A28; 39A30; 39A60; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the plant-herbivore model’s dynamics. The plant’s biomass without herbivores growth with logistic equation assuming that the herbivore (parasitization) occurs after the host’s density-dependent growth regulation occurs. We give a topological classification of the equilibrium points. We show that the boundary equilibrium undergoes the transcritical, fold, and period-doubling bifurcation, whereas the interior equilibrium undergoes a Neimark-Sacker bifurcation. We use the OGY method to control chaos produced by period-doubling bifurcation. The system exhibits bistability between the stable interior attractors in the interior and the stable attractors in the x-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x-$$\end{document}boundary logistic dynamics (periodic orbits and strange attractors) for particular numerical values of parameters. Sufficient conditions for the permanence of the plant-herbivores system are obtained, ensuring the coexistence of both species.
引用
收藏
相关论文
共 50 条
  • [21] Effect of polluted soil on the growth dynamics of plant-herbivore system: a mathematical model
    Misra, O. P.
    Sinha, P.
    Rathore, S. K. S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2008, 78A : 145 - 154
  • [22] MATHEMATICAL-ANALYSIS OF A MODEL FOR A PLANT-HERBIVORE SYSTEM
    ALLEN, LJS
    HANNIGAN, MK
    STRAUSS, MJ
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (04) : 847 - 864
  • [23] Stochastic plant-herbivore interaction model with Allee effect
    Asfaw, Manalebish Debalike
    Kassa, Semu Mitiku
    Lungu, Edward M.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (6-7) : 2183 - 2209
  • [24] Toxicity impact on a plant-herbivore model with disease in herbivores
    Li, Ya
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (06) : 2671 - 2680
  • [25] DYNAMICS OF A PLANT-HERBIVORE SYSTEM WITH RICKER PLANT GROWTH AND THE STRONG ALLEE EFFECTS ON PLANT POPULATION
    Beso, Emin
    Kalabusic, Senada
    Pilav, Esmir
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (02): : 627 - 665
  • [26] Spatiotemporal patterns of a diffusive plant-herbivore model with toxin-determined functional responses: Multiple bifurcations
    Xiang, Nan
    Wu, Qidong
    Wan, Aying
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 187 : 337 - 356
  • [27] Modeling the impact of plant toxicity on plant-herbivore dynamics
    Li, Ya
    Feng, Zhilan
    Swihart, Robert
    Bryant, John
    Huntly, Nancy
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 1021 - 1042
  • [28] Plant-herbivore synchrony and selection on plant flowering phenology
    Fogelstroem, Elsa
    Olofsson, Martin
    Posledovich, Diana
    Wiklund, Christer
    Dahlgren, Johan P.
    Ehrlen, Johan
    [J]. ECOLOGY, 2017, 98 (03) : 703 - 711
  • [29] DIFFUSE COEVOLUTION IN PLANT-HERBIVORE COMMUNITIES
    LEVIN, SA
    SEGEL, LA
    ADLER, FR
    [J]. THEORETICAL POPULATION BIOLOGY, 1990, 37 (01) : 171 - 191
  • [30] On neighbor effects in plant-herbivore interactions
    Tuomi, J
    Augner, M
    Nilsson, P
    [J]. DYNAMICS OF FOREST HERBIVORY: QUEST FOR PATTERN AND PRINCIPLE, 1996, : 28 - 38