Gaussian radial basis functions and inner product spaces

被引:0
|
作者
Irwin W. Sandberg
机构
[1] The University of Texas at Austin,Department of Electrical and Computer Engineering
关键词
Radial basis functions; inner product spaces; classification; uniform approximation;
D O I
暂无
中图分类号
学科分类号
摘要
An approximation result is given concerning Gaussian radial basis functions in a general inner product space. Applications are described concerning the classification of the elements of disjoint sets of signals, and also the approximation of continuous real functions defined on all of ℝn using radial basis function (RBF) networks. More specifically, it is shown that an important large class of classification problems involving signals can be solved using a structure consisting of only a generalized RBF network followed by a quantizer. It is also shown that Gaussian radial basis functions defined on ℝn can uniformly approximate arbitrarily well over all of ℝn any continuous real functionalf on ℝn that meets the condition that |f(x)|→0 as ‖x‖→∞.
引用
收藏
页码:635 / 642
页数:7
相关论文
共 50 条
  • [41] Characterization of Inner Product Spaces by Strongly Schur-Convex Functions
    Adamek, Miroslaw
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [42] ON APPROXIMATELY(p,q)-WRIGHT AFFINE FUNCTIONS AND INNER PRODUCT SPACES
    Anna BAHYRYCZ
    Magdalena PISZCZEK
    Acta Mathematica Scientia(English Series), 2016, 36 (02) : 593 - 601
  • [43] Radial Basis Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [44] Gaussian radial‐basis functions: Cardinal interpolation of ℓp and power‐growth data
    S.D. Riemenschneider
    N. Sivakumar
    Advances in Computational Mathematics, 1999, 11 : 229 - 251
  • [45] Modal-based phase retrieval using Gaussian radial basis functions
    Piscaer, P. J.
    Gupta, A.
    Soloviev, O.
    Verhaegen, M.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (07) : 1233 - 1242
  • [46] APPROXIMATION OF BACKWARD HEAT CONDUCTION PROBLEM USING GAUSSIAN RADIAL BASIS FUNCTIONS
    Abbasbandy, S.
    Azarnavid, B.
    Hashim, I.
    Alsaedi, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 67 - 76
  • [47] Evolutionary q-Gaussian Radial Basis Functions for Binary-Classification
    Fernandez-Navarro, F.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    Cruz-Ramirez, M.
    Carbonero-Ruz, M.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 280 - +
  • [48] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Pankaj K. Mishra
    Sankar K. Nath
    Mrinal K. Sen
    Gregory E. Fasshauer
    Computational Geosciences, 2018, 22 : 1203 - 1218
  • [49] Approximation of input-output maps using Gaussian radial basis functions
    Sandberg, IW
    STABILITY AND CONTROL OF DYNAMICAL SYSTEMS WITH APPLICATIONS: A TRIBUTE TO ANTHONY N. MICHEL, 2003, : 155 - 166
  • [50] Radial basis functions and improved hyperparameter optimisation for gaussian process strain estimation
    Gregg, A. W. T.
    Hendriks, J. N.
    Wensrich, C. M.
    O'Dell, N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 480 : 67 - 77