Exact and asymptotic analysis of infinite server batch service queues with random batch sizes

被引:0
|
作者
Ayane Nakamura
Tuan Phung-Duc
机构
[1] University of Tsukuba,Graduate School of Science and Technology
[2] University of Tsukuba,Institute of Systems and Information Engineering
来源
Queueing Systems | 2024年 / 106卷
关键词
Batch service; Random batch sizes; Infinite server queue; Factorial moment; Central limit theorem; Moment approach; Random variable version of Little’s law; M/M; /; queue; GI/M/; queue; M/M; /; queue; Ride-sharing; Bus systems; Transportation; 60K20; 60K25; 60K30;
D O I
暂无
中图分类号
学科分类号
摘要
Batch service queueing systems are basically classified into two types: a time-based system in which the service facilities depart according to inter-departure times that follows a given distribution, such as the conventional bus system, and a demand-responsive system in which the vehicles start traveling provided that a certain number of customers gather at the waiting space, such as ride-sharing and on-demand bus. Motivated by the recent spreading of demand-responsive transportation, this study examines the M/MX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\textit{X}}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue. In this model, whenever the number of waiting customers reaches a capacity set by a discrete random variable X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{X}$$\end{document}, customers are served by a group. We formulate the M/MX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\textit{X}}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue as a three-dimensional Markov chain whose dimensions are all unbounded and depict a book-type transition diagram. The joint stationary distribution for the number of busy servers, number of waiting customers, and batch size is derived by applying the method of factorial moment generating function. The central limit theorem is proved for the case that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{X}$$\end{document} has finite support under heavy traffic using the exact expressions of the first two moments of the number of busy servers. Moreover, we show that the M/MX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\textit{X}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue encompasses the time-based infinite server batch service queue (M/MG(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{G(x)}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue), which corresponds to the conventional bus system, under a specific heavy traffic regime. In this model, the transportation facility departs periodically according to a given distribution, G(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{G(x)}$$\end{document}, and collects all the waiting customers for a batch service for an exponentially distributed time corresponding to the traveling time on the road. We show a random variable version of Little’s law for the number of waiting customers for the M/MG(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{G(x)}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue. Furthermore, we present a moment approach to obtain the distribution and moments of the number of busy servers in a GI/M/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue by utilizing the M/MG(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{G(x)}$$\end{document}/∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} queue. Finally, we provide some numerical results and discuss their possible applications on transportation systems.
引用
收藏
页码:129 / 158
页数:29
相关论文
共 50 条
  • [21] OPTIMAL BULKING THRESHOLD OF BATCH SERVICE QUEUES
    Zeng, Yun
    Xia, Cathy Honghui
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (02) : 409 - 423
  • [22] Queue Length and Server Content Distribution in an Infinite-Buffer Batch-Service Queue with Batch-Size-Dependent Service
    Gupta, U. C.
    Pradhan, S.
    ADVANCES IN OPERATIONS RESEARCH, 2015, 2015
  • [23] On the Optimal Input Rate in Queues with Batch Service
    Pagano, Michele
    Tananko, Igor
    Stankevich, Elena
    AXIOMS, 2023, 12 (07)
  • [24] Optimal control of parallel queues with batch service
    Xia, CH
    Michailidis, G
    Bambos, N
    Glynn, PW
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2002, 16 (03) : 289 - 307
  • [25] SINGLE-SERVER QUEUES WITH A BATCH MARKOVIAN ARRIVAL PROCESS AND SERVER VACATIONS
    SCHELLHAAS, H
    OR SPEKTRUM, 1994, 15 (04) : 189 - 196
  • [26] Infinite server queues in a random fast oscillatory environment
    Liu, Yiran
    Honnappa, Harsha
    Tindel, Samy
    Yip, Nung Kwan
    QUEUEING SYSTEMS, 2021, 98 (1-2) : 145 - 179
  • [27] Analysis of an infinite-server queue with batch Markovian arrival streams
    Masuyama, H
    Takine, T
    QUEUEING SYSTEMS, 2002, 42 (03) : 269 - 296
  • [28] Analysis of an Infinite-Server Queue with Batch Markovian Arrival Streams
    H. Masuyama
    T. Takine
    Queueing Systems, 2002, 42 : 269 - 296
  • [29] Infinite server queues in a random fast oscillatory environment
    Yiran Liu
    Harsha Honnappa
    Samy Tindel
    Nung Kwan Yip
    Queueing Systems, 2021, 98 : 145 - 179
  • [30] 2 QUEUES WITH RANDOM SERVICE BY A SINGLE SERVER
    LALMAGGU, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (01): : 58 - &