Rankin-Selberg coefficients in large arithmetic progressions

被引:0
|
作者
Emmanuel Kowalski
Yongxiao Lin
Philippe Michel
机构
[1] ETH Zürich,Department of Mathematics
[2] Shandong University,Data Science Institute
[3] EPFL/MATH/TAN,undefined
来源
Science China Mathematics | 2023年 / 66卷
关键词
arithmetic progressions; Rankin-Selberg ; -functions; -method; 11F11; 11N75;
D O I
暂无
中图分类号
学科分类号
摘要
Let (λf (n))n⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f. We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL2 Maass forms, the Rankin-Selberg coefficients (λf (n)2)n⩾1 admit a level of distribution θ = 2/5 + 1/260 − η in arithmetic progressions.
引用
收藏
页码:2767 / 2778
页数:11
相关论文
共 50 条
  • [41] Rankin-Selberg integrals in two complex variables
    Daniel Bump
    Solomon Friedberg
    David Ginzburg
    Mathematische Annalen, 1999, 313 : 731 - 761
  • [42] ON THE NONVANISHING OF RANKIN-SELBERG L-FUNCTIONS
    LUO, WZ
    DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) : 411 - 425
  • [43] Local Rankin-Selberg integrals for Speh representations
    Lapid, Erez M.
    Mao, Zhengyu
    COMPOSITIO MATHEMATICA, 2020, 156 (05) : 908 - 945
  • [44] Rankin-Selberg methods for closed strings on orbifolds
    Carlo Angelantonj
    Ioannis Florakis
    Boris Pioline
    Journal of High Energy Physics, 2013
  • [45] Rankin-Selberg integrals in two complex variables
    Bump, D
    Friedberg, S
    Ginzburg, D
    MATHEMATISCHE ANNALEN, 1999, 313 (04) : 731 - 761
  • [46] THE NONVANISHING HYPOTHESIS AT INFINITY FOR RANKIN-SELBERG CONVOLUTIONS
    Sun, Binyong
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) : 1 - 25
  • [47] Solvable base change and Rankin-Selberg convolutions
    Tim Gillespie
    Science China Mathematics, 2017, 60 : 99 - 112
  • [48] Rankin-Selberg methods for closed strings on orbifolds
    Angelantonj, Carlo
    Florakis, Ioannis
    Pioline, Boris
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [49] Rankin-Selberg periods for spherical principal series
    Frahm, Jan
    Su, Feng
    MANUSCRIPTA MATHEMATICA, 2022, 168 (1-2) : 1 - 33
  • [50] Solvable base change and Rankin-Selberg convolutions
    Gillespie, Tim
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 99 - 112