Rankin-Selberg coefficients in large arithmetic progressions

被引:0
|
作者
Emmanuel Kowalski
Yongxiao Lin
Philippe Michel
机构
[1] ETH Zürich,Department of Mathematics
[2] Shandong University,Data Science Institute
[3] EPFL/MATH/TAN,undefined
来源
Science China Mathematics | 2023年 / 66卷
关键词
arithmetic progressions; Rankin-Selberg ; -functions; -method; 11F11; 11N75;
D O I
暂无
中图分类号
学科分类号
摘要
Let (λf (n))n⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f. We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL2 Maass forms, the Rankin-Selberg coefficients (λf (n)2)n⩾1 admit a level of distribution θ = 2/5 + 1/260 − η in arithmetic progressions.
引用
收藏
页码:2767 / 2778
页数:11
相关论文
共 50 条
  • [1] Rankin-Selberg coefficients in large arithmetic progressions
    Kowalski, Emmanuel
    Lin, Yongxiao
    Michel, Philippe
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2767 - 2778
  • [2] Rankin-Selberg coefficients in large arithmetic progressions
    Emmanuel Kowalski
    Yongxiao Lin
    Philippe Michel
    Science China(Mathematics), 2023, 66 (12) : 2767 - 2778
  • [3] The evaluation of the sum over arithmetic progressions for the coefficients of the Rankin-Selberg series II
    Ichihara, Y
    ANALYTIC NUMBER THEORY, 2002, 6 : 173 - 182
  • [4] On Riesz means of the coefficients of the Rankin-Selberg series
    Ivic, A
    Matsumoto, K
    Tanigawa, Y
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 117 - 131
  • [5] RANKIN-SELBERG CONVOLUTIONS
    JACQUET, H
    PIATETSKIISHAPIRO, II
    SHALIKA, JA
    AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) : 367 - 464
  • [6] On τ-Li Coefficients for Rankin-Selberg L-Functions
    Bucur, Alina
    Ernvall-Hytonen, Anne-Maria
    Odzak, Almasa
    Roditty-Gershon, Edva
    Smajlovic, Lejla
    WOMEN IN NUMBERS EUROPE: RESEARCH DIRECTIONS IN NUMBER THEORY, 2015, 2 : 167 - 190
  • [7] On the Rankin-Selberg problem
    Huang, Bingrong
    MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1217 - 1251
  • [8] ON THE ASYMPTOTICS OF COEFFICIENTS OF RANKIN-SELBERG L-FUNCTIONS
    Lao, H.
    Zhu, H.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (2) : 524 - 550
  • [9] On Li's coefficients for the Rankin-Selberg L-functions
    Odzak, Almasa
    Smajlovic, Lejla
    RAMANUJAN JOURNAL, 2010, 21 (03): : 303 - 334
  • [10] Uniqueness of Rankin-Selberg Periods
    Chen, Fulin
    Sun, Binyong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) : 5849 - 5873