Mössbauer studies of selected synthetic silicates

被引:0
|
作者
G. Amthauer
W. Lottermoser
G. Redhammer
G. Tippelt
机构
来源
Hyperfine Interactions | 1998年 / 113卷
关键词
Neutron Diffraction; Fayalite; Lorentzian Line Shape; Octahedral Layer; Polyhedral Linkage;
D O I
暂无
中图分类号
学科分类号
摘要
Mössbauer spectra of fayalite-, 7#x03B1;-Fe2SiO4, powder and single crystals were taken in the antiferromagnetic temperature region below TN≅65 K. The orientation of the efg and H(0) with respect to the crystallographic axes was determined as function of the temperature and compared to neutron diffraction and magnetic susceptibility data. A similar study was performed with Li‐acmite LiFeSi2O6, whose magnetic structure can be regarded as a model compound for quasi one‐dimensional systems. Synthetic annite KFe3[AlSi3O10(OH)2] has to contain at least about 10% Fe3+ in order to be stable. A comparison of the evaluation of the spectra assuming either Lorentzian line shape of the doublets or quadrupole splitting distributions QSDs shows that Fe3+/Fe2+‐ratios can be determined precisely by both methods. However, M2/M1-site distributions cannot be evaluated with great accuracy. In ilvaite CaFe3[Si2O7/O/(OH)], there is a thermally activated intersite electron hopping between Fe2+ and Fe3+ at temperatures around 300 K in a double octahedron chain. At temperatures above 395 K there is extended electron delocalization in a narrow d‐ or polaron‐band. The substitution of Fe by Mn favours both effects and lowers the temperature of the crystallographic phase transition monoclinic to orthorhombic distinctly. In the solid solution series member acmite(50%)‐hedenbergite(50%) Na0.5Ca0.5Fe2[Si2O6] just intersite electron hopping between Fe2+ and Fe3+ in the M1 octahedron chain and no formation of polaron bands is observed. This is explained by the larger Fe–Fe‐intrachain distances compared to those in ilvaite or magnetite.
引用
收藏
页码:219 / 248
页数:29
相关论文
共 50 条
  • [21] Mössbauer and magnetization studies of iron oxide nanocrystals
    Lennart Häggström
    Saeed Kamali
    Tore Ericsson
    Per Nordblad
    Anwar Ahniyaz
    Lennart Bergström
    [J]. Hyperfine Interactions, 2008, 183 : 49 - 53
  • [22] Mössbauer studies of biological nanophase magnetic materials
    D.P.E. Dickson
    [J]. Hyperfine Interactions, 1998, 111 (1-4): : 171 - 177
  • [23] Mössbauer studies of phase transformations in iron alloys
    R.C. Mercader
    J. Desimoni
    [J]. Hyperfine Interactions, 1997, 110 : 101 - 109
  • [24] Mössbauer studies of heteroleptic Sn(II) derivatives
    G.M. de Lima
    L.J.‐M. Pierssens
    B. Mahieu
    [J]. Hyperfine Interactions, 1999, 122 : 327 - 331
  • [25] Mössbauer and TDPAC Studies on Fe/Mo Multilayers
    Y. Murakami
    Y. Ohkubo
    D. Fuse
    Y. Sakamoto
    T. Ono
    S. Kitao
    M. Seto
    M. Tanigaki
    T. Saito
    S. Nasu
    Y. Kawase
    [J]. Hyperfine Interactions, 2004, 158 : 145 - 149
  • [26] Mössbauer Study of Discoloration of Synthetic Resin Covered Electric Switches
    E. Kuzmann
    I. Muzsay
    Z. Homonnay
    A. Vértes
    [J]. Hyperfine Interactions, 2002, 139-140 : 245 - 250
  • [27] Synthetic versiliaite and apuanite: investigation by 57Fe Mössbauer spectroscopy
    Ryan D. Bayliss
    Frank J. Berry
    James C. Cumby
    Colin Greaves
    Jean-Claude Jumas
    Jose F. Marco
    [J]. Hyperfine Interactions, 2016, 237
  • [28] Mössbauer studies of the N50 permanent magnet
    Jung Tae Lim
    HyunKyu Kim
    Chul Sung Kim
    Sung Yong An
    Kang Ryong Choi
    Eun Joo Hahn
    [J]. Journal of the Korean Physical Society, 2015, 66 : 1908 - 1912
  • [29] Mössbauer studies of magnetite and Al-substituted maghemites
    G.M. da Costa
    E. De Grave
    R.E. Vandenberghe
    [J]. Hyperfine Interactions, 1998, 117 : 207 - 243
  • [30] Mössbauer studies on impactites from Lonar impact crater
    H. C. Verma
    S. Misra
    M. Shyam Prasad
    N. Bijlani
    A. Tripathi
    Horton Newsom
    [J]. Hyperfine Interactions, 2008, 186 : 15 - 22