A two-level local projection stabilisation on uniformly refined triangular meshes

被引:0
|
作者
Gunar Matthies
Lutz Tobiska
机构
[1] Universität Kassel,Fachbereich 10 Mathematik und Naturwissenschaften, Institut für Mathematik
[2] Otto-von-Guericke-Universität Magdeburg,Institut für Analysis und Numerik
来源
Numerical Algorithms | 2012年 / 61卷
关键词
Stabilised finite elements; Local projection stabilisation; 65N12; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
The two-level local projection stabilisation on triangular meshes is based on the refinement of a macro cell into three child cells by connecting the barycentre with the vertices of the macro cell. This refinement technique leads to non-nested meshes with large inner angles and to non-nested finite element spaces. We show that also the red refinement where a triangle is divided into four child cells by connecting the midpoints of the edges can be used. This avoids the above mentioned disadvantages. For the red refinement a local inf-sup condition for the continuous, piecewise polynomial approximation spaces of order less than or equal to r ≥ 2 living on the refined mesh and discontinuous, piecewise polynomial projection spaces of order less than or equal to r − 1 living on the coarser mesh is established. Numerical tests compare the local projection stabilisation resulting from both refinement rules in case of convection-diffusion problems.
引用
收藏
页码:465 / 478
页数:13
相关论文
共 50 条
  • [11] Two-level preconditioner with small coarse grid appropriate for unstructured meshes
    Krizkova, J
    Vanek, P
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1996, 3 (04) : 255 - 274
  • [12] Resonance interaction between uniformly rotating two-level entangled atoms
    Huabing Cai
    Zhen Li
    Zhongzhou Ren
    The European Physical Journal Plus, 133
  • [13] Resonance interaction between uniformly rotating two-level entangled atoms
    Cai, Huabing
    Li, Zhen
    Ren, Zhongzhou
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (11):
  • [14] Two-level control scheme for stabilisation of periodic orbits for planar monopedal running
    Sadati, N.
    Dumont, G. A.
    Hamed, K. Akbari
    Gruver, W. A.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (13): : 1528 - 1543
  • [15] Convergence of local projection stabilisation finite element methods for convection–diffusion problems on layer-adapted meshes
    Sebastian Franz
    BIT Numerical Mathematics, 2017, 57 : 771 - 786
  • [16] Local projection stabilization for advection-diffusion-reaction problems: One-level vs. two-level approach
    Knobloch, Petr
    Lube, Gert
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (12) : 2891 - 2907
  • [17] A Two-Level Finite Element Method for the Stationary Navier-Stokes Equations Based on a Stabilized Local Projection
    Zhang, Yan
    He, Yinnian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 460 - 477
  • [18] Entanglement dynamics: Generalized master equation for uniformly accelerated two-level systems
    Soares, M. S.
    Svaiter, N. F.
    Menezes, G.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [19] Entanglement dynamics for uniformly accelerated two-level atoms in the presence of a reflecting boundary
    Cheng, Shijing
    Yu, Hongwei
    Hu, Jiawei
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [20] Energy shift of a uniformly moving two-level atom through a thermal reservoir
    Cai, Huabing
    Wang, Li-Gang
    PHYSICS LETTERS A, 2022, 440