On sums and products in ℂ[x]

被引:0
|
作者
Ernie Croot
Derrick Hart
机构
[1] Georgia Institute of Technology,Department of Mathematics
[2] Rutgers University,Hill Center for Mathematical Sciences
来源
The Ramanujan Journal | 2010年 / 22卷
关键词
Sum-product; Mason’s theorem; ABC theorem; Erdős–Szemerédi conjecture; Fermat’s last theorem; 11B30; 11C08;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that there exists an absolute constant c>0 such that if A is a set of n monic polynomials, and if the product set A.A has at most n1+c elements, then |A+A|≫n2. This can be thought of as step towards proving the Erdős–Szemerédi sum-product conjecture for polynomial rings. We also show that under a suitable generalization of Fermat’s Last Theorem, the same result holds for the integers. The methods we use to prove are a mixture of algebraic (e.g. Mason’s theorem) and combinatorial (e.g. the Ruzsa–Plunnecke inequality) techniques.
引用
收藏
页码:33 / 54
页数:21
相关论文
共 50 条