We prove that there exists an absolute constant c>0 such that if A is a set of n monic polynomials, and if the product set A.A has at most n1+c elements, then |A+A|≫n2. This can be thought of as step towards proving the Erdős–Szemerédi sum-product conjecture for polynomial rings. We also show that under a suitable generalization of Fermat’s Last Theorem, the same result holds for the integers. The methods we use to prove are a mixture of algebraic (e.g. Mason’s theorem) and combinatorial (e.g. the Ruzsa–Plunnecke inequality) techniques.
机构:
Shibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378570, JapanShibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378570, Japan
Ikeda, Soichi
Kiuchi, Isao
论文数: 0引用数: 0
h-index: 0
机构:
Yamaguchi Univ, Fac Sci, Dept Math Sci, Yoshida 1677-1, Yamaguchi 7538512, JapanShibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378570, Japan
Kiuchi, Isao
Matsuoka, Kaneaki
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, JapanShibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378570, Japan