Discriminative multi-scale adjacent feature for person re-identification

被引:0
|
作者
Mengzan Qi
Sixian Chan
Feng Hong
Yuan Yao
Xiaolong Zhou
机构
[1] Zhejiang University of Technology,College of Computer Science and Technology
[2] Zhejiang Shuren University,School of Information Science and Technology
[3] University of Nottingham Ningbo China,School of Computer Science
[4] Quzhou University,College of Electrical and Information Engineering
来源
关键词
Person re-identification; Feature extraction; Feature aggregation; Discriminative feature;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, discriminative and robust identification information has played an increasingly critical role in Person Re-identification (Re-ID). It is a fact that the existing part-based methods demonstrate strong performance in the extraction of fine-grained features. However, their intensive partitions lead to semantic information ambiguity and background interference. Meanwhile, we observe that the body with different structural proportions. Hence, we assume that aggregation with the multi-scale adjacent features can effectively alleviate the above issues. In this paper, we propose a novel Discriminative Multi-scale Adjacent Feature (MSAF) learning framework to enrich semantic information and disregard background. In summary, we establish multi-scale interaction in two stages: the feature extraction stage and the feature aggregation stage. Firstly, a Multi-scale Feature Extraction (MFE) module is designed by combining CNN and Transformer structure to obtain the discriminative specific feature, as the basis for the feature aggregation stage. Secondly, a Jointly Part-based Feature Aggregation (JPFA) mechanism is revealed to implement adjacent feature aggregation with diverse scales. The JPFA contains Same-scale Feature Correlation (SFC) and Cross-scale Feature Correlation (CFC) sub-modules. Finally, to verify the effectiveness of the proposed method, extensive experiments are performed on the common datasets of Market-1501, CUHK03-NP, DukeMTMC, and MSMT17. The experimental results achieve better performance than many state-of-the-art methods.
引用
下载
收藏
页码:4557 / 4569
页数:12
相关论文
共 50 条
  • [31] Discriminative feature mining with relation regularization for person re-identification
    Yang, Jing
    Zhang, Canlong
    Li, Zhixin
    Tang, Yanping
    Wang, Zhiwen
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [32] Multi-Branch Person Re-Identification Basedon Multi-Scale Attention
    Cong, Li
    Min, Jiang
    Jun, Kong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [33] Multi-scale Learning for Low-resolution Person Re-identification
    Li, Xiang
    Zheng, Wei-Shi
    Wang, Xiaojuan
    Xiang, Tao
    Gong, Shaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3765 - 3773
  • [34] An efficient multi-scale channel attention network for person re-identification
    Qian Luo
    Jie Shao
    Wanli Dang
    Long Geng
    Huaiyu Zheng
    Chang Liu
    The Visual Computer, 2024, 40 : 3515 - 3527
  • [35] MULTI-SCALE SPATIAL-TEMPORAL NETWORK FOR PERSON RE-IDENTIFICATION
    Wang, Zhikang
    He, Lihuo
    Gao, Xinbo
    Huang, Yuanfei
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2052 - 2056
  • [36] Multi-Scale Temporal Cues Learning for Video Person Re-Identification
    Li, Jianing
    Zhang, Shiliang
    Huang, Tiejun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4461 - 4473
  • [37] Multi-scale local-global architecture for person re-identification
    Liu, Jing
    Tiwari, Prayag
    Tri Gia Nguyen
    Gupta, Deepak
    Band, Shahab S.
    SOFT COMPUTING, 2022, 26 (16) : 7967 - 7977
  • [38] An efficient multi-scale channel attention network for person re-identification
    Luo, Qian
    Shao, Jie
    Dang, Wanli
    Geng, Long
    Zheng, Huaiyu
    Liu, Chang
    VISUAL COMPUTER, 2024, 40 (05): : 3515 - 3527
  • [39] SMSNet: A Novel Multi-scale Siamese Model for Person Re-Identification
    Tagore, Nirbhay Kumar
    Chattopadhyay, Pratik
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS - DCNET, OPTICS, SIGMAP AND WINSYS (ICETE), VOL 2, 2020, : 103 - 112
  • [40] LOCAL TO GLOBAL WITH MULTI-SCALE ATTENTION NETWORK FOR PERSON RE-IDENTIFICATION
    Sun, Lingchuan
    Liu, Jianlei
    Zhu, Yingxin
    Jiang, Zhuqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2254 - 2258