The Light Ray Transform on Lorentzian Manifolds

被引:0
|
作者
Matti Lassas
Lauri Oksanen
Plamen Stefanov
Gunther Uhlmann
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] University College London,Department of Mathematics
[3] Purdue University,Department of Mathematics
[4] University of Washington,Department of Mathematics
[5] IAS,undefined
[6] HKUST,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.
引用
收藏
页码:1349 / 1379
页数:30
相关论文
共 50 条
  • [31] Injectivity Radius of Lorentzian Manifolds
    Bing-Long Chen
    Philippe G. LeFloch
    Communications in Mathematical Physics, 2008, 278 : 679 - 713
  • [32] Geometric symmetries on Lorentzian manifolds
    Saifullah, K.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2007, 122 (04): : 447 - 457
  • [33] A note on Osserman Lorentzian manifolds
    Blazic, N
    Bokan, N
    Gilkey, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 227 - 230
  • [34] Spacelike surfaces in Lorentzian manifolds
    Elghanmi, R
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (03) : 199 - 218
  • [35] Stochastic quantization on Lorentzian manifolds
    Kuipers, Folkert
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [36] Holonomy groups of Lorentzian manifolds
    Galaev, A. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (02) : 249 - 298
  • [37] LORENTZIAN MANIFOLDS WITH PRINCIPAL CONNECTION
    ROSCA, R
    VANHECKE, L
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1975, 22 (03): : 201 - 216
  • [38] Reductive homogeneous Lorentzian manifolds
    Alekseevsky, Dmitri
    Chrysikos, Ioannis
    Galaev, Anton
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 84
  • [39] η-RICCI SOLITONS IN LORENTZIAN α-MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 713 - 725
  • [40] KILLINGS FIELDS ON LORENTZIAN MANIFOLDS
    FLAHERTY, FJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (08): : 517 - 518