Topological Structure of the Space of Composition Operators Between Different Fock Spaces

被引:0
|
作者
Le Hai Khoi
Le Thi Hong Thom
Pham Trong Tien
机构
[1] Nanyang Technological University (NTU),Division of Mathematical Sciences, School of Physical and Mathematical Sciences
[2] University of Science and Technology of Hanoi - USTH (Vietnam France University),Department of Mathematics, Mechanics and Informatics
[3] Vietnam Academy of Science and Technology,Department of Mathematics
[4] University of Science,undefined
[5] Vietnam National University,undefined
[6] FPT University,undefined
[7] Thang Long Institute of Mathematics and Applied Sciences,undefined
来源
关键词
Topological structure; Fock space; Composition operators; 47B33; 47B38; 32A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the topological structure problem for the space of composition operators acting from a Fock space Fp(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}^p({{\mathbb {C}}}^n)$$\end{document} to another one Fq(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}^q({{\mathbb {C}}}^n)$$\end{document} with 0<p,q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < p, q \le \infty $$\end{document} is completely solved. Explicit descriptions of all (path) components and isolated points in this space are obtained.
引用
收藏
相关论文
共 50 条
  • [31] Topological Structure of the Space of Weighted Composition Operators on H∞
    Takuya Hosokawa
    Keiji Izuchi
    Shûichi Ohno
    Integral Equations and Operator Theory, 2005, 53 : 509 - 526
  • [32] Topological structure of the space of weighted composition operators on H∞
    Hosokawa, T
    Izuchi, K
    Ohno, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 509 - 526
  • [33] CYCLICITY OF COMPOSITION OPERATORS ON THE FOCK SPACE
    Bayart, Frederic
    Tapia-garcia, Sebastian
    JOURNAL OF OPERATOR THEORY, 2024, 92 (02) : 549 - 577
  • [34] WEIGHTED COMPOSITION OPERATORS ON THE FOCK SPACE
    Fatehi, Mahsa
    OPERATORS AND MATRICES, 2019, 13 (02): : 461 - 469
  • [35] Toeplitz composition operators on the Fock space
    Gupta, Anuradha
    Singh, Shivam Kumar
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (07) : 1077 - 1092
  • [36] Weighted composition operators on the Fock space
    Kaikai Han
    Maofa Wang
    Science China Mathematics, 2022, 65 : 111 - 126
  • [37] Weighted composition operators on the Fock space
    Han, Kaikai
    Wang, Maofa
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 111 - 126
  • [38] Weighted composition operators on the Fock space
    Kaikai Han
    Maofa Wang
    ScienceChina(Mathematics), 2022, 65 (01) : 111 - 126
  • [39] The norm of composition operators on the Fock space
    Dai, Jineng
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (09) : 1608 - 1616
  • [40] Weighted composition operators between Fock-type spaces in CN
    Stevic, Stevo
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) : 2750 - 2760