On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum

被引:0
|
作者
L. A. Bassalygo
V. A. Zinov'ev
机构
[1] Russian Academy of Sciences,Institute for Problems in Information Transmission
来源
Mathematical Notes | 2002年 / 72卷
关键词
trigonometric sum; Weil estimate; polynomial; field of even characteristic;
D O I
暂无
中图分类号
学科分类号
摘要
We study trigonometric sums in finite fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F_Q $$ \end{document}. The Weil estimate of such sums is well known: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)| \leqslant ({\text{deg }}f - 1)\sqrt Q $$ \end{document}, where f is a polynomial with coefficients from F(Q). We construct two classes of polynomials f, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(Q,2) = 2$$ \end{document}, for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)|$$ \end{document} attains the largest possible value and, in particular, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)| = ({\text{deg }}f - 1)\sqrt Q $$ \end{document}.
引用
收藏
页码:152 / 157
页数:5
相关论文
共 50 条