Global short-term forecasting of COVID-19 cases

被引:0
|
作者
Thiago de Paula Oliveira
Rafael de Andrade Moral
机构
[1] University of Edinburgh,The Roslin Institute and Royal (Dick) School of Veterinary Studies
[2] Maynooth University,Department of Mathematics and Statistics and Hamilton Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The continuously growing number of COVID-19 cases pressures healthcare services worldwide. Accurate short-term forecasting is thus vital to support country-level policy making. The strategies adopted by countries to combat the pandemic vary, generating different uncertainty levels about the actual number of cases. Accounting for the hierarchical structure of the data and accommodating extra-variability is therefore fundamental. We introduce a new modelling framework to describe the pandemic’s course with great accuracy and provide short-term daily forecasts for every country in the world. We show that our model generates highly accurate forecasts up to seven days ahead and use estimated model components to cluster countries based on recent events. We introduce statistical novelty in terms of modelling the autoregressive parameter as a function of time, increasing predictive power and flexibility to adapt to each country. Our model can also be used to forecast the number of deaths, study the effects of covariates (such as lockdown policies), and generate forecasts for smaller regions within countries. Consequently, it has substantial implications for global planning and decision making. We present forecasts and make all results freely available to any country in the world through an online Shiny dashboard.
引用
收藏
相关论文
共 50 条
  • [21] Short-term effects of COVID-19 on semen parameters: A multicenter study of 69 cases
    Erbay, Guven
    Sanli, Ahmet
    Turel, Harun
    Yavuz, Ufuk
    Erdogan, Abdullah
    Karabakan, Mehmet
    Yaris, Mehmet
    Gultekin, Mehmet Hamza
    ANDROLOGY, 2021, 9 (04) : 1060 - 1065
  • [22] National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021
    Bracher, Johannes
    Wolffram, Daniel
    Deuschel, Jannik
    Goergen, Konstantin
    Ketterer, Jakob L.
    Ullrich, Alexander
    Abbott, Sam
    Barbarossa, Maria V.
    Bertsimas, Dimitris
    Bhatia, Sangeeta
    Bodych, Marcin
    Bosse, Nikos I.
    Burgard, Jan Pablo
    Castro, Lauren
    Fairchild, Geoffrey
    Fiedler, Jochen
    Fuhrmann, Jan
    Funk, Sebastian
    Gambin, Anna
    Gogolewski, Krzysztof
    Heyder, Stefan
    Hotz, Thomas
    Kheifetz, Yuri
    Kirsten, Holger
    Krueger, Tyll
    Krymova, Ekaterina
    Leithaeser, Neele
    Li, Michael L.
    Meinke, Jan H.
    Miasojedow, Blazej
    Michaud, Isaac J.
    Mohring, Jan
    Nouvellet, Pierre
    Nowosielski, Jedrzej M.
    Ozanski, Tomasz
    Radwan, Maciej
    Rakowski, Franciszek
    Scholz, Markus
    Soni, Saksham
    Srivastava, Ajitesh
    Gneiting, Tilmann
    Schienle, Melanie
    COMMUNICATIONS MEDICINE, 2022, 2 (01):
  • [23] National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021
    Johannes Bracher
    Daniel Wolffram
    Jannik Deuschel
    Konstantin Görgen
    Jakob L. Ketterer
    Alexander Ullrich
    Sam Abbott
    Maria V. Barbarossa
    Dimitris Bertsimas
    Sangeeta Bhatia
    Marcin Bodych
    Nikos I. Bosse
    Jan Pablo Burgard
    Lauren Castro
    Geoffrey Fairchild
    Jochen Fiedler
    Jan Fuhrmann
    Sebastian Funk
    Anna Gambin
    Krzysztof Gogolewski
    Stefan Heyder
    Thomas Hotz
    Yuri Kheifetz
    Holger Kirsten
    Tyll Krueger
    Ekaterina Krymova
    Neele Leithäuser
    Michael L. Li
    Jan H. Meinke
    Błażej Miasojedow
    Isaac J. Michaud
    Jan Mohring
    Pierre Nouvellet
    Jedrzej M. Nowosielski
    Tomasz Ozanski
    Maciej Radwan
    Franciszek Rakowski
    Markus Scholz
    Saksham Soni
    Ajitesh Srivastava
    Tilmann Gneiting
    Melanie Schienle
    Communications Medicine, 2
  • [24] Forecasting Covid-19 Time Series Data using the Long Short-Term Memory (LSTM)
    Mukhtar, Harun
    Taufiq, Reny Medikawati
    Herwinanda, Ilham
    Winarso, Doni
    Hayami, Regiolina
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 211 - 217
  • [25] Mathematical Modeling and Short-Term Forecasting of the COVID-19 Epidemic in Bulgaria: SEIRS Model with Vaccination
    Margenov, Svetozar
    Popivanov, Nedyu
    Ugrinova, Iva
    Hristov, Tsvetan
    MATHEMATICS, 2022, 10 (15)
  • [26] On stable parameter estimation and short-term forecasting with quantified uncertainty with application to COVID-19 transmission
    Smirnova, Alexandra
    Pidgeon, Brian
    Luo, Ruiyan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (06): : 823 - 844
  • [27] Attention-based and time series models for short-term forecasting of COVID-19 spread
    Markevičiūte, Jurgita
    Bernatavičiene, Jolita
    Levuliene, Rūta
    Medvedev, Viktor
    Treigys, Povilas
    Venskus, Julius
    Computers, Materials and Continua, 2021, 70 (01): : 695 - 714
  • [28] Attention-Based and Time Series Models for Short-Term Forecasting of COVID-19 Spread
    Markeviciute, Jurgita
    Bernataviciene, Jolita
    Levuliene, Ruta
    Medvedev, Viktor
    Treigys, Povilas
    Venskus, Julius
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 695 - 714
  • [29] Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-19 Lockdown in France
    Obst, David
    de Vilmarest, Joseph
    Goude, Yannig
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (05) : 4754 - 4763
  • [30] Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies
    Keeling, Matt J.
    Hill, Edward M.
    Gorsich, Erin E.
    Penman, Bridget
    Guyver-Fletcher, Glen
    Holmes, Alex
    Leng, Trystan
    McKimm, Hector
    Tamborrino, Massimiliano
    Dyson, Louise
    Tildesley, Michael J.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (01)