Modified centroid triplet loss for person re-identification

被引:0
|
作者
Alaa Alnissany
Yazan Dayoub
机构
[1] Higher Institute for Applied Sciences and Technology,Department of Electronic and Mechanical Systems
[2] HSE University,Department of Computer Science
来源
关键词
Person ReID; Triplet loss; Center loss; Inter class distance; Centroid triplet loss; DukeMTMC-ReID; Market-1501;
D O I
暂无
中图分类号
学科分类号
摘要
Person Re-identification (ReID) is the process of matching target individuals to their images within different images or videos captured from a variety of angles or cameras. This is a critical task for surveillance applications, in particular, these applications that operate in large environments such as malls and airports. Recent studies use data-driven approaches to tackle this problem. This work continues on this path by presenting a modification of a previously defined loss, the centroid triplet loss ( CTL). The proposed loss, modified centroid triplet loss (MCTL), emphasizes more on the interclass distance. It is divided into two parts, one penalizes for interclass distance and second penalizes for intraclass distance. Mean Average Precision (mAP) was adopted to validate our approach, two datasets are also used for validation; Market-1501 and DukeMTMC. The results were calculated for first rank of identification and mAP. For dataset Market-1501 dataset, the results were 98.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.4\%$$\end{document} rank1, 98.63%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.63\%$$\end{document} mAP, and 96.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.8\%$$\end{document} rank1, 97.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97.3\%$$\end{document} mAP on DukeMTMC dataset, the results outweighed those of existing studies in the domain.
引用
收藏
相关论文
共 50 条
  • [1] Modified centroid triplet loss for person re-identification
    Alnissany, Alaa
    Dayoub, Yazan
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [2] Person re-identification using vision transformer and centroid triplet loss
    Ijjina, Earnest Paul
    Medipelly, Rampavan
    Beerukuri, Santosh Kumar
    Vinnakota, Sowmya
    Nelakurthi, Vijay Chowdary
    Multimedia Tools and Applications, 2024, 83 (29) : 73777 - 73788
  • [3] A Balanced Triplet Loss for Person Re-Identification
    Lu, Zhenyu
    Lu, Yonggang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [4] Person Re-Identification With Triplet Focal Loss
    Zhang, Shizhou
    Zhang, Qi
    Wei, Xing
    Zhang, Yanning
    Xia, Yong
    IEEE ACCESS, 2018, 6 : 78092 - 78099
  • [5] Person re-identification by the asymmetric triplet and identification loss function
    Cheng, De
    Gong, Yihong
    Shi, Weiwei
    Zhang, Shizhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3533 - 3550
  • [6] Person re-identification by the asymmetric triplet and identification loss function
    De Cheng
    Yihong Gong
    Weiwei Shi
    Shizhou Zhang
    Multimedia Tools and Applications, 2018, 77 : 3533 - 3550
  • [7] Triplet Ratio Loss for Robust Person Re-identification
    Hu, Shuping
    Wang, Kan
    Cheng, Jun
    Tan, Huan
    Pang, Jianxin
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 42 - 54
  • [8] Correction to: Person re-identification by the symmetric triplet and identification loss function
    De Cheng
    Yihong Gong
    Weiwei Shi
    Shizhou Zhang
    Multimedia Tools and Applications, 2018, 77 : 3551 - 3552
  • [9] Triplet online instance matching loss for person re-identification
    Li, Ye
    Yin, Guangqiang
    Liu, Chunhui
    Yang, Xiaoyu
    Wang, Zhiguo
    NEUROCOMPUTING, 2021, 433 : 10 - 18
  • [10] Set Augmented Triplet Loss for Video Person Re-Identification
    Fang, Pengfei
    Ji, Pan
    Petersson, Lars
    Harandi, Mehrtash
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 464 - 473