Modified centroid triplet loss for person re-identification

被引:0
|
作者
Alaa Alnissany
Yazan Dayoub
机构
[1] Higher Institute for Applied Sciences and Technology,Department of Electronic and Mechanical Systems
[2] HSE University,Department of Computer Science
来源
关键词
Person ReID; Triplet loss; Center loss; Inter class distance; Centroid triplet loss; DukeMTMC-ReID; Market-1501;
D O I
暂无
中图分类号
学科分类号
摘要
Person Re-identification (ReID) is the process of matching target individuals to their images within different images or videos captured from a variety of angles or cameras. This is a critical task for surveillance applications, in particular, these applications that operate in large environments such as malls and airports. Recent studies use data-driven approaches to tackle this problem. This work continues on this path by presenting a modification of a previously defined loss, the centroid triplet loss ( CTL). The proposed loss, modified centroid triplet loss (MCTL), emphasizes more on the interclass distance. It is divided into two parts, one penalizes for interclass distance and second penalizes for intraclass distance. Mean Average Precision (mAP) was adopted to validate our approach, two datasets are also used for validation; Market-1501 and DukeMTMC. The results were calculated for first rank of identification and mAP. For dataset Market-1501 dataset, the results were 98.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.4\%$$\end{document} rank1, 98.63%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.63\%$$\end{document} mAP, and 96.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.8\%$$\end{document} rank1, 97.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97.3\%$$\end{document} mAP on DukeMTMC dataset, the results outweighed those of existing studies in the domain.
引用
收藏
相关论文
共 50 条
  • [31] A feature enhancement loss for person re-identification
    Peng, Yao
    Lin, Yining
    Ni, Huajian
    Gao, Hua
    Hu, Chenchen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [32] Full Batch Loss for Person Re-identification
    Chen, Bing
    Zha, YuFei
    Wu, Min
    Li, YunQiang
    Hou, Zhiqiang
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [33] Person Re-identification with Joint-loss
    Liu, Junqi
    Jiang, Na
    Zhou, Zhong
    Xu, Yue
    2017 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2017), 2017, : 1 - 6
  • [34] Person re-identification by the symmetric triplet and identification loss function (vol 77, pg 3533, 2018)
    Cheng, De
    Gong, Yihong
    Shi, Weiwei
    Zhang, Shizhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3551 - +
  • [35] Multilevel triplet deep learning model for person re-identification
    Zhao, Cairong
    Chen, Kang
    Wei, Zhihua
    Chen, Yipeng
    Miao, Duoqian
    Wang, Wei
    PATTERN RECOGNITION LETTERS, 2019, 117 : 161 - 168
  • [36] Fine-Grained Spatial Alignment Model for Person Re-Identification With Focal Triplet Loss
    Zhou, Qinqin
    Zhong, Bineng
    Lan, Xiangyuan
    Sun, Gan
    Zhang, Yulun
    Zhang, Baochang
    Ji, Rongrong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7578 - 7589
  • [37] A Mask-Pooling Model With Local-Level Triplet Loss for Person Re-Identification
    Zheng, Fudan
    Cai, Tingting
    Wang, Ying
    Deng, Chufu
    Chen, Zhiguang
    Zhu, Huiling
    IEEE ACCESS, 2020, 8 : 138191 - 138202
  • [38] Beyond Triplet Loss: Person Re-Identification With Fine-Grained Difference-Aware Pairwise Loss
    Yan, Cheng
    Pang, Guansong
    Bai, Xiao
    Liu, Changhong
    Ning, Xin
    Gu, Lin
    Zhou, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1665 - 1677
  • [39] Rank-in-Rank Loss for Person Re-identification
    Xu, Xin
    Yuan, Xin
    Wang, Zheng
    Zhang, Kai
    Hu, Ruimin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (02)
  • [40] Person re-identification via adaptive verification loss
    Tian, Hui
    Zhang, Xiang
    Lan, Long
    Luo, Zhigang
    NEUROCOMPUTING, 2019, 359 : 93 - 101