Robust control of linear systems under input saturation using Barrier Lyapunov functions

被引:0
|
作者
Mera M. [1 ]
Salgado I. [2 ]
机构
[1] ESIME Ticomán-Instituto Politécnico Nacional, Av. Ticomán No. 600, San José Ticomán, Ciudad de México
[2] CIDETEC-Instituto Politécnico Nacional, Av. Juan de Dios Bátiz S/n Esq. Miguel Othón de Mendizábal, Nueva Industrial Vallejo, Ciudad de México
关键词
Barrier Lyapunov functions; Invariant ellipsoid method; Region of attraction; Saturated control;
D O I
10.1007/s40435-016-0294-2
中图分类号
学科分类号
摘要
This paper deals with the robust stabilization of input saturated uncertain linear systems with perturbed measurements. The controller designed as a linear output feedback allowed to characterize the region of attraction where the initial conditions must belong in order to guarantee the asymptotic convergence of the system trajectories into a ultimately bounded region around the origin. The stability analysis employed the concept of Barrier Lyapunov functions (BLF) and the attractive ellipsoid method (AEM) to find sufficient conditions in terms of linear matrix inequalities characterizing the ultimate bounded region of attraction. The methodology proposed is to use the BLF to estimate the region of attraction, while the AEM successfully characterized the ultimately bound. And optimization procedure maximized the set estimating (in some sense) the region of attraction and minimized the ultimate bounded set. Simulation results showed the accuracy in the estimation of the region of attraction and the minimal ellipsoid characterization. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:1231 / 1238
页数:7
相关论文
共 50 条
  • [1] Robust Gain Scheduling Control for Linear Systems with Input Saturation
    Wang, Qian
    Chen, Guoda
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 142 - 146
  • [2] Robust stabilization of control systems using piecewise linear Lyapunov functions and evolutionary algorithm
    Tagawa, K
    Ohta, Y
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3191 - 3194
  • [3] Analysis and synthesis of robust control systems using linear parameter dependent Lyapunov functions
    Geromel, Jose C.
    Korogui, Rubens H.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (12) : 1984 - 1989
  • [4] Robust control of linear systems in presence of input saturation and unmodelled dynamics
    Canale, M
    Milanese, M
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4248 - 4253
  • [5] Control Barrier Functions for Constrained Control of Linear Systems with Input Delay
    Jankovic, Mrdjan
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3316 - 3321
  • [6] Adaptive Robust Quadratic Programs using Control Lyapunov and Barrier Functions
    Zhao, Pan
    Mao, Yanbing
    Tao, Chuyuan
    Hovakimyan, Naira
    Wang, Xiaofeng
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3353 - 3358
  • [7] Robust control for state constrained systems based on composite barrier Lyapunov functions
    Llorente-Vidrio, Dusthon
    Mera, Manuel
    Salgado, Ivan
    Chairez, Isaac
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7238 - 7254
  • [8] Robust stabilization and enlargement of attractive region of control systems using piecewise linear Lyapunov functions
    Ohta, Y
    Takenaka, K
    Fukuta, N
    [J]. IECON'03: THE 29TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1 - 3, PROCEEDINGS, 2003, : 1140 - 1145
  • [9] Universal Construction of Control Lyapunov Functions for Multi-Input Linear Systems
    Cai Xiushan
    [J]. PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 233 - 236
  • [10] On semiglobal stabilization of linear systems with input saturation using a multiple parametric Lyapunov approach
    Wang, Qingling
    Yu, Changbin
    Gao, Huijun
    [J]. 2012 2ND AUSTRALIAN CONTROL CONFERENCE (AUCC), 2012, : 150 - 155