Analysis and synthesis of robust control systems using linear parameter dependent Lyapunov functions

被引:68
|
作者
Geromel, Jose C. [1 ]
Korogui, Rubens H. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, DSCE, BR-13083970 Campinas, SP, Brazil
关键词
linear matrix inequalities (LMIs); linear systems; robust control design; robust stability and performance;
D O I
10.1109/TAC.2006.884958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note provides sufficient robust stability conditions for continuous time polytopic systems. They are obtained from the Frobenius-Perron Theorem applied to the time derivative of a linear parameter dependent Lyapunov function and are expressed in terms of linear matrix inequalities (LMI). They contain as special cases, various sufficient stability conditions available in the literature to date. As a natural generalization, the determination of a guaranteed H-2 cost is addressed. A new gain parametrization is introduced in order to make possible the state feedback robust control synthesis using parameter dependent Lyapunov functions through linear matrix inequalities. Numerical examples are included for illustration.
引用
收藏
页码:1984 / 1989
页数:6
相关论文
共 50 条
  • [1] Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions
    Feron, E
    Apkarian, P
    Gahinet, P
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) : 1041 - 1046
  • [2] Robust Control for Nonlinear Uncertain Systems Using Parameter Dependent Lyapunov Functions
    Zhi, Yue
    Yu, Jinyong
    Lu, Jianhua
    [J]. 2014 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2014, : 1873 - 1876
  • [3] On parameter-dependent Lyapunov functions for robust stability of linear systems
    Henrion, D
    Arzelier, D
    Peaucelle, D
    Lasserre, JB
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 887 - 892
  • [4] Robust H∞ control of uncertain linear systems via parameter-dependent Lyapunov functions
    de Souza, CE
    Trofino, A
    de Oliveira, J
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3194 - 3199
  • [5] Robust stability of linear stationary systems: Analysis by parameter-dependent Lyapunov quadratic functions
    Rapoport, LB
    [J]. AUTOMATION AND REMOTE CONTROL, 1998, 59 (08) : 1171 - 1176
  • [6] Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions
    Geromel, JC
    De Oliveira, MC
    Bernussou, J
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (03) : 700 - 711
  • [7] PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS AND THE POPOV CRITERION IN ROBUST ANALYSIS AND SYNTHESIS
    HADDAD, WM
    BERNSTEIN, DS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) : 536 - 543
  • [8] RETRACTED: Robust Control for Nonlinear Uncertain Systems Using Parameter Dependent Lyapunov Functions (Retracted Article)
    Zhi, Yue
    Yu, Jinyong
    Zhao, Guorong
    [J]. 2011 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL SCIENCE-ICEES 2011, 2011, 11 : 1377 - 1382
  • [9] Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions
    Oliveira, Ricardo C. L. F.
    de Oliveira, Mauricio C.
    Peres, Pedro L. D.
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (08) : 680 - 689
  • [10] Robust stability/performance analysis for linear time-invariant polynomially parameter-dependent systems using polynomially parameter-dependent Lyapunov functions
    Sato, Masayuki
    Peaucelle, Dimith
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5809 - 5811