In this paper we study differentiable equivalences of germs of singular holomorphic foliations in dimension two. We prove that the Camacho–Sad indices are invariant by such equivalences. We also prove that the Baum–Bott index is a differentiable invariant for some classes of foliations. As a corollary we show that generic degree two holomorphic foliations of P2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^2$$\end{document} are differentiably rigid.
机构:
NATL POLYTECH INST,CTR INVEST & ESTUDIOS AVANZADOS,MEXICO CITY 14,DF,MEXICONATL POLYTECH INST,CTR INVEST & ESTUDIOS AVANZADOS,MEXICO CITY 14,DF,MEXICO
HAEFLIGER, A
SUNDARARAMAN, D
论文数: 0引用数: 0
h-index: 0
机构:
NATL POLYTECH INST,CTR INVEST & ESTUDIOS AVANZADOS,MEXICO CITY 14,DF,MEXICONATL POLYTECH INST,CTR INVEST & ESTUDIOS AVANZADOS,MEXICO CITY 14,DF,MEXICO
机构:
Univ Fed Fluminense, Dept Matemat Aplicada, BR-24020140 Rio De Janeiro, BrazilUniv Fed Fluminense, Dept Matemat Aplicada, BR-24020140 Rio De Janeiro, Brazil