Space-time wave packets localized in all dimensions

被引:0
|
作者
Murat Yessenov
Justin Free
Zhaozhong Chen
Eric G. Johnson
Martin P. J. Lavery
Miguel A. Alonso
Ayman F. Abouraddy
机构
[1] University of Central Florida,CREOL, The College of Optics & Photonics
[2] Clemson University,Micro
[3] University of Glasgow,Photonics Laboratory, the Holcombe Department of Electrical and Computer Engineering
[4] CNRS,James Watt School of Engineering
[5] Centrale Marseille,undefined
[6] Institut Fresnel,undefined
[7] Aix Marseille Univ.,undefined
[8] The Institute of Optics,undefined
[9] University of Rochester,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Optical wave packets that are localized in space and time, but nevertheless overcome diffraction and travel rigidly in free space, are a long sought-after field structure with applications ranging from microscopy and remote sensing, to nonlinear and quantum optics. However, synthesizing such wave packets requires introducing non-differentiable angular dispersion with high spectral precision in two transverse dimensions, a capability that has eluded optics to date. Here, we describe an experimental strategy capable of sculpting the spatio-temporal spectrum of a generic pulsed beam by introducing arbitrary radial chirp via two-dimensional conformal coordinate transformations of the spectrally resolved field. This procedure yields propagation-invariant ‘space-time’ wave packets localized in all dimensions, with tunable group velocity in the range from 0.7c to 1.8c in free space, and endowed with prescribed orbital angular momentum. By providing unprecedented flexibility in sculpting the three-dimensional structure of pulsed optical fields, our experimental strategy promises to be a versatile platform for the emerging enterprise of space-time optics.
引用
收藏
相关论文
共 50 条
  • [41] Navigating localized wave packets in phase space
    Zhao, W.
    Mestayer, J. J.
    Lancaster, J. C.
    Dunning, F. B.
    Reinhold, C. O.
    Yoshida, S.
    Burgdoerfer, J.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (25)
  • [42] Space-Time Wave Packets as a Platform for a Free-Space Optical Delay Line
    Yessenov, Murat
    Bhaduri, Basanta
    Delfyett, Peter J.
    Abouraddy, Ayman F.
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [43] Free-space optical delay line using space-time wave packets
    Yessenov, Murat
    Bhaduri, Basanta
    Delfyett, Peter J.
    Abouraddy, Ayman F.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [44] Optical space-time wave packets having arbitrary group velocities in free space
    H. Esat Kondakci
    Ayman F. Abouraddy
    [J]. Nature Communications, 10
  • [45] Refraction of space-time wave packets: II. Experiments at normal incidence
    Allende Motz, Alyssa M.
    Yessenov, Murat
    Bhaduri, Basanta
    Abouraddy, Ayman F.
    [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38 (10): : 1450 - 1461
  • [46] Strong double space-time wave packets using optical parametric amplification
    Zhaoyang Li
    Yuxin Leng
    Ruxin Li
    [J]. Communications Physics, 5
  • [47] Mid-infrared diffraction-free space-time wave packets
    Yessenov, Murat
    Ru, Qitian
    Schepler, Kenneth L.
    Meem, Monjurul
    Menon, Rajesh
    Vodopyanov, Konstantin L.
    Abouraddy, Ayman F.
    [J]. OSA CONTINUUM, 2020, 3 (03) : 420 - 429
  • [48] Energy-flux characterization of conical and space-time coupled wave packets
    Lotti, A.
    Couairon, A.
    Faccio, D.
    Di Trapani, P.
    [J]. PHYSICAL REVIEW A, 2010, 81 (02)
  • [49] A space-time DPG method for the wave equation in multiple dimensions
    Gopalakrishnan, Jay
    Sepulveda, Paulina
    [J]. SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 117 - 139
  • [50] Decoherence of quantum wave packets due to interaction with conformal space-time fluctuations
    Power, WL
    Percival, IC
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1996): : 955 - 968