Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework

被引:0
|
作者
Shuwen Hu
Yi Jing
Tao Li
You-Gan Wang
Zhenyu Liu
Jing Gao
Yu-Chu Tian
机构
[1] Queensland University of Technology,School of Computer Science
[2] CSIRO,Agriculture and Food
[3] The University of New South Wales,Faculty of Science
[4] Inner Mongolia Agricultural University,School of Life Sciences
[5] Australian Catholic University,Institute for Learning Sciences and Teacher Education
[6] Inner Mongolia Agriculture University,School of Computer and Information Engineering
来源
关键词
Circadian gene; Gene regulatory relationships; Gene expression data; Fuzzy c-means clustering; Dynamic time warping;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Inferring gene regulatory networks from asynchronous microarray data with AIRnet
    Oviatt, David
    Clement, Mark
    Snell, Quinn
    Sundberg, Kenneth
    Lai, Chun Wan J.
    Allen, Jared
    Roper, Randall
    BMC GENOMICS, 2010, 11
  • [22] Inferring gene regulatory networks from asynchronous microarray data with AIRnet
    David Oviatt
    Mark Clement
    Quinn Snell
    Kenneth Sundberg
    Chun Wan J Lai
    Jared Allen
    Randall Roper
    BMC Genomics, 11
  • [23] Inferring microRNA-mRNA causal regulatory relationships from expression data
    Thuc Duy Le
    Liu, Lin
    Tsykin, Anna
    Goodall, Gregory J.
    Liu, Bing
    Sun, Bing-Yu
    Li, Jiuyong
    BIOINFORMATICS, 2013, 29 (06) : 765 - 771
  • [24] Inferring the regulatory network behind a gene expression experiment
    Bleda, Marta
    Medina, Ignacio
    Alonso, Roberto
    De Maria, Alejandro
    Salavert, Francisco
    Dopazo, Joaquin
    NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W168 - W172
  • [25] Inferring cancer metabolism from gene-expression data
    Vakul Mohanty
    Nature Reviews Cancer, 2024, 24 : 230 - 230
  • [26] Inferring cancer metabolism from gene-expression data
    Mohanty, Vakul
    NATURE REVIEWS CANCER, 2024, 24 (04) : 230 - 230
  • [27] Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data
    Shuonan Chen
    Jessica C. Mar
    BMC Bioinformatics, 19
  • [28] Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data
    Chen, Shuonan
    Mar, Jessica C.
    BMC BIOINFORMATICS, 2018, 19
  • [29] Inferring Gene Network Rewiring by Combining Gene Expression and Gene Mutation Data
    Tu, Jia-Juan
    Le Ou-Yang
    Hu, Xiaohua
    Zhang, Xiao-Fei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 1042 - 1048
  • [30] Inferring Gene Regulatory Networks Using Hybrid Parallel Computing
    Ma, Jean C. W. K.
    Stefanes, Marco A.
    Higa, Carlos H. A.
    Rozante, Luiz C. S.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT I, 2018, 10960 : 151 - 166