A finite volume method based on the Crouzeix–Raviart element for elliptic PDE's in two dimensions

被引:7
|
作者
Panagiotis Chatzipantelidis
机构
[1] Department of Mathematics,
[2] University of Crete,undefined
[3] GR-71409 Heraklion,undefined
[4] Crete,undefined
[5] Greece ,undefined
[6] Institute of Applied and Computational Mathematics,undefined
[7] FO.R.T.H,undefined
[8] GR-71110 Heraklion,undefined
[9] Crete,undefined
[10] Greece; e-mail: chatzipa@math.uch.gr ,undefined
来源
Numerische Mathematik | 1999年 / 82卷
关键词
Mathematics Subject Classification (1991):65N30, 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and analyse a finite volume method for the discretization of elliptic boundary value problems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^2$\end{document}. The method is based on nonuniform triangulations with piecewise linear nonconforming spaces. We prove optimal order error estimates in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}–norm and a mesh dependent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^1$\end{document}–norm.
引用
收藏
页码:409 / 432
页数:23
相关论文
共 50 条
  • [31] Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
    Talal Rahman
    Xuejun Xu
    Ronald Hoppe
    Numerische Mathematik, 2005, 101 : 551 - 572
  • [32] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    Na An
    Xijun Yu
    Huanzhen Chen
    Chaobao Huang
    Zhongyan Liu
    Journal of Inequalities and Applications, 2017
  • [33] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    An, Na
    Yu, Xijun
    Chen, Huanzhen
    Huang, Chaobao
    Liu, Zhongyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [34] On an additive Schwarz preconditioner for the Crouzeix-Raviart mortar finite element
    Rahman, T
    Xu, XJ
    Hoppe, RHW
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 335 - 342
  • [35] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330
  • [36] A 3D Crouzeix-Raviart mortar finite element
    Marcinkowski, Leszek
    Rahman, Talal
    Valdman, Jan
    COMPUTING, 2009, 86 (04) : 313 - 330
  • [37] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [38] Two one-parameter families of nonconforming enrichments of the Crouzeix-Raviart finite element
    Nudo, Federico
    APPLIED NUMERICAL MATHEMATICS, 2024, 203 : 160 - 172
  • [39] Crouzeix-Raviart Finite Element Approximation for the Parabolic Obstacle Problem
    Gudi, Thirupathi
    Majumder, Papri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 273 - 292
  • [40] A NONCONFORMING CROUZEIX-RAVIART TYPE FINITE ELEMENT ON POLYGONAL MESHES
    Wang, Yanqiu
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 237 - 271