A finite volume method based on the Crouzeix–Raviart element for elliptic PDE's in two dimensions

被引:7
|
作者
Panagiotis Chatzipantelidis
机构
[1] Department of Mathematics,
[2] University of Crete,undefined
[3] GR-71409 Heraklion,undefined
[4] Crete,undefined
[5] Greece ,undefined
[6] Institute of Applied and Computational Mathematics,undefined
[7] FO.R.T.H,undefined
[8] GR-71110 Heraklion,undefined
[9] Crete,undefined
[10] Greece; e-mail: chatzipa@math.uch.gr ,undefined
来源
Numerische Mathematik | 1999年 / 82卷
关键词
Mathematics Subject Classification (1991):65N30, 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and analyse a finite volume method for the discretization of elliptic boundary value problems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^2$\end{document}. The method is based on nonuniform triangulations with piecewise linear nonconforming spaces. We prove optimal order error estimates in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}–norm and a mesh dependent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^1$\end{document}–norm.
引用
收藏
页码:409 / 432
页数:23
相关论文
共 50 条