Entropy Variation of a Charged (2 + 1)-Dimensional BTZ Black Hole Under Hawking Radiation

被引:0
|
作者
Shad Ali
Peng Wen
Wen-Biao Liu
机构
[1] Beijing Normal University,Department of Physics
关键词
Black hole entropy; Information paradox; Hawking radiation; Black hole volume;
D O I
暂无
中图分类号
学科分类号
摘要
Using the definition of a black hole’s volume introduced by Christodoulou and Rovelli, we calculate the interior volume of a (2 + 1)-dimensional charged Banados Teitelboim Zanelli (BTZ) black hole, and find that the volume increases linearly with time. Afterwards, the entropy of a massless scalar field inside the black hole is calculated and the result indicates that the entropy will be also increasing with time infinitely. Moreover, thinking about Hawking radiation, the ratio of variation of the scalar field’s entropy to the variation of Bekenstein–Hawking entropy is approximately a linear function of m, which is quite different from a RN black hole while m is relatively large. In the end, we extend the calculation above to a massive BTZ black hole and find that the relationship with different M~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {M}$\end{document} between two kinds of entropy is similar to the previous result. But the difference is that the relationship function F(m,q,M~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F(m,q,\tilde {M})$\end{document} will tend to be a constant when the mass parameter M~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {M}$\end{document} becomes big enough.
引用
收藏
页码:1206 / 1213
页数:7
相关论文
共 50 条
  • [1] Entropy Variation of a Charged (2+1)-Dimensional BTZ Black Hole Under Hawking Radiation
    Ali, Shad
    Wen, Peng
    Liu, Wen-Biao
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1206 - 1213
  • [2] Entropy variation of rotating BTZ black hole under Hawking radiation
    Ali, Shad
    Kamran, Muhammad Arshad
    Khan, Misbah Ullah
    [J]. PHYSICA SCRIPTA, 2022, 97 (04)
  • [3] The Entropy Inside a Charged Black Hole Under Hawking Radiation
    Shan-Zhong Han
    Jian-Zhi Yang
    Xin-Yang Wang
    Wen-Biao Liu
    [J]. International Journal of Theoretical Physics, 2018, 57 : 3429 - 3435
  • [4] The Entropy Inside a Charged Black Hole Under Hawking Radiation
    Han, Shan-Zhong
    Yang, Jian-Zhi
    Wang, Xin-Yang
    Liu, Wen-Biao
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (11) : 3429 - 3435
  • [5] Hawking radiation and entropy of a BTZ black hole with minimum length
    Anacleto, M. A.
    Brito, F. A.
    Passos, E.
    Paulino, Jose L.
    Silva, A. T. N.
    Spinelly, J.
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (32)
  • [6] Charged Hawking radiation and the entropy variation in a Reissner-Nordstrom black hole
    Wang, Xin-Yang
    Han, Shan-Zhong
    Liu, Wen-Biao
    [J]. PHYSICS LETTERS B, 2018, 787 : 64 - 67
  • [7] Hawking radiation of (2+1)-dimensional nonstatic charged black hole
    Chen, DM
    Shen, YG
    [J]. CHINESE SCIENCE BULLETIN, 1996, 41 (11): : 930 - 933
  • [8] Quantum gravity effect on the Hawking radiation of charged rotating BTZ black hole
    Ganim Gecim
    Yusuf Sucu
    [J]. General Relativity and Gravitation, 2018, 50
  • [9] Quantum gravity effect on the Hawking radiation of charged rotating BTZ black hole
    Gecim, Ganim
    Sucu, Yusuf
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (12)
  • [10] Hawking radiation from the charged BTZ black hole with back-reaction
    Li, Hui-Ling
    Yang, Shu-Zheng
    [J]. EPL, 2007, 79 (02)