Local well-posedness for relaxational fluid vesicle dynamics

被引:0
|
作者
Matthias Köhne
Daniel Lengeler
机构
[1] Heinrich-Heine-Universität Düsseldorf,Mathematisches Institut
[2] Universität Regensburg,Fakultät für Mathematik
来源
关键词
Stokes equations; Fluid dynamics; Biological membrane; Canham–Helfrich energy; Lipid bilayer; Local well-posedness; Maximal regularity; Primary 35Q92; Secondary 35A01; 35A02; 35Q74; 35K25; 76D27;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by a contraction mapping argument. Our approach is based on the maximal Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-regularity of the model’s linearization.
引用
收藏
页码:1787 / 1818
页数:31
相关论文
共 50 条
  • [21] Local well-posedness for the homogeneous Euler equations
    Zhong, Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3829 - 3848
  • [22] A Note on the Local Well-Posedness for the Whitham Equation
    Ehrnstrom, Mats
    Escher, Joachim
    Pei, Long
    ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 : 63 - 75
  • [23] Local Well-posedness of Kinetic Chemotaxis Models
    Sander C. Hille
    Journal of Evolution Equations, 2008, 8 : 423 - 448
  • [24] Local Well-posedness for the Kinetic MMT Model
    Germain, Pierre
    La, Joonhyun
    Zhang, Katherine Zhiyuan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (01)
  • [25] LOCAL WELL-POSEDNESS OF NONLOCAL BURGERS EQUATIONS
    Benzoni-Gavage, Sylvie
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (3-4) : 303 - 320
  • [26] Unconditional local well-posedness for periodic NLS
    Kishimoto, Nobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 766 - 787
  • [27] Local and global well-posedness for the Ostrovsky equation
    Linares, F
    Milanés, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) : 325 - 340
  • [28] LOCAL WELL-POSEDNESS OF THE EPDIFF EQUATION: A SURVEY
    Kolev, Boris
    JOURNAL OF GEOMETRIC MECHANICS, 2017, 9 (02): : 167 - 189
  • [29] On the local well-posedness of Lovelock and Horndeski theories
    Papallo, Giuseppe
    Reall, Harvey S.
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [30] Local well-posedness of a quasilinear wave equation
    Doerfler, Willy
    Gerner, Hannes
    Schnaubelt, Roland
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2110 - 2123