Morton filters: fast, compressed sparse cuckoo filters

被引:0
|
作者
Alex D. Breslow
Nuwan S. Jayasena
机构
[1] AMD Research,Advanced Micro Devices, Inc.
来源
The VLDB Journal | 2020年 / 29卷
关键词
Morton filter; Cuckoo filter; Hardware cache and memory bandwidth optimized data structures and algorithms; Approximate set membership data structure; Approximate membership query data structure; Rank-and-select;
D O I
暂无
中图分类号
学科分类号
摘要
Approximate set membership data structures (ASMDSs) are ubiquitous in computing. They trade a tunable, often small, error rate (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}) for large space savings. The canonical ASMDS is the Bloom filter, which supports lookups and insertions but not deletions in its simplest form. Cuckoo filters (CFs), a recently proposed class of ASMDSs, add deletion support and often use fewer bits per item for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}. This work introduces the Morton filter (MF), a novel CF variant that introduces several key improvements to its progenitor. Like CFs, MFs support lookups, insertions, and deletions, and when using an optional batching interface raise their respective throughputs by up to 2.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 20.8×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 1.3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}. MFs achieve these improvements by (1) introducing a compressed block format that permits storing a logically sparse filter compactly in memory, (2) leveraging succinct embedded metadata to prune unnecessary memory accesses, and (3) more heavily biasing insertions to use a single hash function. With these optimizations, lookups, insertions, and deletions often only require accessing a single hardware cache line from the filter. MFs and CFs are then extended to support self-resizing, a feature of quotient filters (another ASMDS that uses fingerprints). MFs self-resize up to 13.9×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster than rank-and-select quotient filters (a state-of-the-art self-resizing filter). These improvements are not at a loss in space efficiency, as MFs typically use comparable to slightly less space than CFs for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}.
引用
收藏
页码:731 / 754
页数:23
相关论文
共 50 条
  • [31] Advanced compressed air filters for dairies
    Davis, John
    FOOD AUSTRALIA, 2008, 60 (04): : 127 - 127
  • [32] Selecting filters for compressed air systems
    Pridham, R.Geoffrey
    1988, (42):
  • [33] MultiLayer compressed counting bloom filters
    Ficara, Domenico
    Giordano, Stefano
    Procissi, Gregorio
    Vitucci, Fabio
    27TH IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), VOLS 1-5, 2008, : 933 - 941
  • [34] A method to protect Cuckoo filters from soft errors
    Reviriego, P.
    Pontarelli, S.
    Maestro, J. A.
    MICROELECTRONICS RELIABILITY, 2017, 72 : 85 - 89
  • [35] Towards Application of Cuckoo Filters in Network Security Monitoring
    Grashoefer, Jan
    Jacob, Florian
    Hartenstein, Hannes
    2018 14TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM), 2018, : 373 - 377
  • [36] Binary Fuse Filters: Fast and Smaller Than Xor Filters
    Graf T.M.
    Lemire D.
    ACM Journal of Experimental Algorithmics, 2022, 27 (01):
  • [37] Design of Sparse Filters for Channel Shortening
    Chopra, Aditya
    Evans, Brian L.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1518 - 1521
  • [38] Design of Sparse Filters for Channel Shortening
    Chopra, Aditya
    Evans, Brian Lawrence
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2012, 66 (03): : 259 - 272
  • [39] VISUAL TRACKING WITH SPARSE CORRELATION FILTERS
    Dong, Yanmei
    Yang, Min
    Pei, Mingtao
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 439 - 443
  • [40] Design of Sparse Filters for Channel Shortening
    Aditya Chopra
    Brian Lawrence Evans
    Journal of Signal Processing Systems, 2012, 66 : 259 - 272